Abstract

In this paper, we propose a novel flexible metamaterial (MM) absorber. The conductive pattern consists of liquid metal eutectic gallium indium alloy (EGaIn) enclosed in elastomeric microfluidic channels. Polydimethylsiloxane (PDMS) material is used as a supporting substrate. The proposed MM absorber is flexible because of its liquid metal and PDMS substrate. Numerical simulations and experimental results are presented when the microfluidic channels are filled with liquid metal. In order to evaluate the proposed MM absorber’s performance, the fabricated absorber prototype is tested with rectangular waveguides. Almost perfect absorptivity is achieved at a resonant frequency of 8.22 GHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid metal-based plasmonics

Jinqi Wang, Shuchang Liu, Z. Valy Vardeny, and Ajay Nahata
Opt. Express 20(3) 2346-2353 (2012)

Reconfigurable plasmonic devices using liquid metals

Jinqi Wang, Shuchang Liu, and Ajay Nahata
Opt. Express 20(11) 12119-12126 (2012)

Microfluidic tunable inkjet-printed metamaterial absorber on paper

Kenyu Ling, Minyeong Yoo, Wenjing Su, Kyeongseob Kim, Benjamin Cook, Manos M. Tentzeris, and Sungjoon Lim
Opt. Express 23(1) 110-120 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
    [Crossref]
  7. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
    [Crossref]
  8. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [Crossref]
  9. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
    [Crossref]
  10. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  11. D. Kim, D. Kim, S. Hwang, and J. Jang, “Surface relief structures for a flexible broadband terahertz absorber,” Opt. Express 20(15), 16815–16822 (2012).
    [Crossref]
  12. J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
    [Crossref]
  13. S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
    [Crossref]
  14. G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
    [Crossref]
  15. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
    [Crossref]
  16. S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, A polarization-insensitive metamaterial absorber with a broad angular band” in Electrical Engineering (ICEE), 2012 20th Iranian Conference on Anonymous (2012).
  17. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  18. M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
    [Crossref]

2014 (1)

M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
[Crossref]

2012 (3)

2011 (2)

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

2010 (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

2009 (2)

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Averitt, R. D.

Berg, J. M.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Chen, S.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Cheng, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Cheng, S.

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Datta, A.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Dickey, M. D.

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Gu, C.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Hayes, G. J.

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Hjort, K.

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

Hwang, S.

Iwaszczuk, K.

Jang, J.

Jepsen, P. U.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kim, D.

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lazzi, G.

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Padilla, W.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Qusba, A.

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Rydberg, A.

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Safari, M.

M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shafai, C.

M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
[Crossref]

Shafai, L.

M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
[Crossref]

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

So, J.

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Strikwerda, A. C.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tao, H.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Thelen, J.

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Tian, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Wu, Z.

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

Yang, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[Crossref]

Appl. Phys. Lett. (3)

S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, “Liquid metal stretchable unbalanced loop antenna,” Appl. Phys. Lett. 94(14), 144103 (2009).
[Crossref]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

G. J. Hayes, J. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Trans. Antenn. Propag. 60(5), 2151–2156 (2012).
[Crossref]

M. Safari, C. Shafai, and L. Shafai, “X-Band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antenn. Propag. 63(3), 1014–1021 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

J. Phys. D (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, A polarization-insensitive metamaterial absorber with a broad angular band” in Electrical Engineering (ICEE), 2012 20th Iranian Conference on Anonymous (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Layout of the proposed unit cell: a = 10 mm, b = 11 mm, c = 2 mm, d = 1 mm, e = 2 mm, f = 1 mm, g = 1 mm; (a) top view; (b) bird view.
Fig. 2
Fig. 2 Complex impedance of the proposed metamaterial absorber.
Fig. 3
Fig. 3 Simulated absorptivity of the proposed MM absorber at different polarizations.
Fig. 4
Fig. 4 Simulated absorptivity results of the flat and bent MM absorber with different curvature radii R.
Fig. 5
Fig. 5 Simulated field distributions at 8.19 GHz: (a) magnitude of electric field; (b) vector current density; (c) volume loss density.
Fig. 6
Fig. 6 Illustration of fabrication process.
Fig. 7
Fig. 7 Illustration of fabricated MM absorber: (a) samples at each fabrication step; (b) bent flexible MM absorber.
Fig. 8
Fig. 8 (a) Waveguide measurement setup; (b) open-ended rectangular waveguide; (c) sample in the top of the waveguide adaptor.
Fig. 9
Fig. 9 Simulated and measured absorptivity results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(ω)=1Γ(ω)T(ω)
Z M (ω)= μ rM μ 0 ε rM ε 0 = η 0 (1+ S 11 ) 2 S 21 2 (1 S 11 ) 2 S 21 2

Metrics