Abstract

We design, fabricate, and demonstrate a silicon nitride (Si3N4) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm2 footprint, lateral misalignment tolerance up to 400 nm, and less than −52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Guangyao Liu, Shaoqi Feng, Siwei Li, Weicheng Lai, and S. J. B. Yoo
Opt. Express 25(9) 10474-10483 (2017)

Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions

Wesley D. Sacher, Jared C. Mikkelsen, Patrick Dumais, Jia Jiang, Dominic Goodwill, Xianshu Luo, Ying Huang, Yisu Yang, Antoine Bois, Patrick Guo-Qiang Lo, Eric Bernier, and Joyce K. S. Poon
Opt. Express 25(25) 30862-30875 (2017)

Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits

Michael Wood, Peng Sun, and Ronald M. Reano
Opt. Express 20(1) 164-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
    [Crossref]
  2. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  3. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  4. J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
    [Crossref]
  5. M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
    [Crossref] [PubMed]
  6. X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
    [Crossref] [PubMed]
  7. R. Moreira, J. Barton, M. Belt, T. Huffman, and D. Blumenthal, “Optical interconnect for 3D Integration of ultra-low loss planar lightwave circuits,” in Advanced Photonics 2013, OSA Technical Digest (online) (OSA, 2013), IT2A.4.
  8. D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19(15), 14130–14136 (2011).
    [Crossref] [PubMed]
  9. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  10. K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3D photonic integrated circuits,” in Optical Fiber Communication Conference, (OSA, 2015), paper Th1F.6.
    [Crossref]
  11. K. Shang, S. Pathak, B. Guan, G. Liu, C. Qin, R. P. Scott, and S. J. B. Yoo, “Si3N4 multilayer platform for photonic integrated circuits,” in The Conference on Lasers and Electro-Optics (OSA, 2015), STu2F.6.

2014 (2)

2013 (1)

2012 (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2011 (2)

2008 (1)

1991 (1)

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Adibi, A.

Akimoto, R.

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Arbabi, A.

Asghari, M.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Bauters, J. F.

Blumenthal, D. J.

Bowers, J. E.

Bruinink, C. M.

Cohen, D.

Cunningham, J. E.

Dai, D.

Eftekhar, A. A.

Feng, D.

Feng, J.

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Goddard, L. L.

Heck, M. J. R.

Heideman, R. G.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Koch, T. L.

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Koren, U.

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Krishnamoorthy, A. V.

Kung, C. C.

Lei, H.

Leinse, A.

Liang, H.

Luff, J.

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Pourabolghasem, R.

Shubin, I.

Simons, J.

Sodagar, M.

Sze, T.

Tien, M. C.

Wang, Z.

Zheng, D.

Zheng, X.

IEEE J. Quantum Electron. (1)

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Other (3)

R. Moreira, J. Barton, M. Belt, T. Huffman, and D. Blumenthal, “Optical interconnect for 3D Integration of ultra-low loss planar lightwave circuits,” in Advanced Photonics 2013, OSA Technical Digest (online) (OSA, 2013), IT2A.4.

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3D photonic integrated circuits,” in Optical Fiber Communication Conference, (OSA, 2015), paper Th1F.6.
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, C. Qin, R. P. Scott, and S. J. B. Yoo, “Si3N4 multilayer platform for photonic integrated circuits,” in The Conference on Lasers and Electro-Optics (OSA, 2015), STu2F.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Cross section of proposed waveguide design; (b) simulated confinement factor (blue) and bending radius (red) with varied Si3N4 single mode waveguide core thickness; at each bending radius, the simulated bending loss is less than 0.3 dB per 90°; (c) simulated phase change with required electrical power for overcladding thickness of 2 μm (blue), 5 μm (green), and 8 μm (red).
Fig. 2
Fig. 2 (a)Schematic of multilayer platform including tapered vertical coupler and waveguides crossing; (b-d)vertical coupling simulation of devices with varying (b) taper length,(c) lateral misalignment, and (d) inter-layer gap [10].
Fig. 3
Fig. 3 (a) Left axis: FDTD simulation of multilayer waveguides crossing intra-layer transmission with varied interlayer gap at crossing angles of 90° (red), 60° (purple), 45° (green), and 30° (blue); right axis: zoomed-in vertical coupler transmission plot. (b-c) FDTD simulation of multilayer (b) crosstalk and (c) reflection with varied interlayer gap at crossing angles of 90° (red), 60° (purple), 45° (green), and 30° (blue) [11].
Fig. 4
Fig. 4 Fabrication flow charts of (a) initial cleaning of a 6 inch silicon wafer; (b) LTO deposition; (c) Si3N4 bottom layer deposition; (d) Si3N4 bottom layer lithography and etching; (e)inter-layer LTO cladding deposition; (f) CMP; (g) Si3N4 top layer deposition; (h) Si3N4 top layer lithography and etching; (i) LTO overcladding deposition; (j) CMP; (k) Ti/Pt heater lift-off. (l) photo of fabricated Si3N4 tip; (m) photo of fabricated multilayer waveguides crossing at 90°; (n) AFM measurement of SiO2 surface after CMP.
Fig. 5
Fig. 5 (a) Single layer Si3N4top view schematic for 10 sections of inverse taper and positive taper; (b) Double-layer Si3N4top view schematic for 20 stages of overlaid vertical couplers; (c-e) measured vertical coupling transmission of in-series 20 couplers with varying (c) overlapping length, (d) interlayer lateral misalignment, and (e)taper length.
Fig. 6
Fig. 6 Measured multilayer crossing transmission with interlayer gap of (a) 500 nm, (b) 700 nm, and (c) 900nm at crossing angle of 30° (blue), 60° (black), and 90° (red); (d) measured interlayer crosstalk with varied interlayer gap at crossing angle of 60° (black) and 90° (red).
Fig. 7
Fig. 7 (a) Device photo of fabricated multilayer starcoupler; (b) measured transmission of32 output ports on layer1 with 300 nm interlayer gap, where from port #15 to #32, the number of multilayer crossings increases from 1 to 18; (c) measured transmission of 32 output ports on layer1 (red) and 32 output ports on layer2 (black) with 800 nm interlayer gap.

Metrics