Abstract

In situ direct observation of the lasing process in a cholesteric liquid crystal (CLC) laser array using a CMOS camera was used to investigate discontinuous laser tuning in a parallel CLC cell. In accordance with the discontinuous pitch change by thermal energy transfer, at the same time the laser wavelength undergoes an immediate and discontinuous shift. And we found out the reason why the CLC phase has domain textures. And this work develops a simple active tunable laser array by forming a spatial temperature gradient along a wedge CLC cell. With this new strategy, only just about 7 nm laser tuning range at room temperature is extremely widened over the 105 nm wavelength range with about 0.2 nm tuning resolution. Furthermore, there is no aging effect because the employed CLC array has only one chiral molecular concentration. This strategy could be used in a practical CLC laser device application.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound

H. B. Lu, X. Y. Xie, J. Xing, C. Xu, Z. Q. Wu, G. B. Zhang, G. Q. Lv, and L. Z. Qiu
Opt. Mater. Express 6(10) 3145-3158 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).
  2. K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nano grooves fabricated by nano imprint lithography,” Opt. Mater. Express 4(2), 234–240 (2014).
    [Crossref]
  3. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
    [Crossref]
  4. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
    [Crossref] [PubMed]
  5. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
    [Crossref]
  6. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
    [Crossref]
  7. S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
    [Crossref] [PubMed]
  8. S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
    [Crossref]
  9. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [Crossref] [PubMed]
  10. A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
    [Crossref]
  11. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
    [Crossref]
  12. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [Crossref]
  13. Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
    [Crossref]
  14. Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
    [Crossref]
  15. H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
    [Crossref]
  16. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
    [Crossref]
  17. A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
    [Crossref]
  18. M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51(8R), 082702 (2012).
    [Crossref]
  19. Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
    [Crossref]
  20. A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
    [Crossref]
  21. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Ch. 7.
  22. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Ch. 6.
  23. I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgaplasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
    [Crossref]
  24. A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
    [Crossref]
  25. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  26. M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
    [Crossref]
  27. M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(12), 2007–2018 (2011).
    [Crossref] [PubMed]
  28. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
    [Crossref] [PubMed]
  29. Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
    [Crossref] [PubMed]
  30. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
    [Crossref] [PubMed]
  31. M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
    [Crossref] [PubMed]
  32. M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” Nanosci. Nanotechnol.in press.
  33. M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
    [Crossref] [PubMed]
  34. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
    [Crossref] [PubMed]
  35. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
    [Crossref]
  36. Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
    [Crossref]
  37. V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 43–69 (2006).
    [Crossref]
  38. M. A. Osipov and H.-G. Kuball, “Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules,” Eur. Phys. J. E 5(5), 589–598 (2001).
    [Crossref]

2015 (4)

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgaplasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

2014 (4)

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
[Crossref] [PubMed]

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nano grooves fabricated by nano imprint lithography,” Opt. Mater. Express 4(2), 234–240 (2014).
[Crossref]

2013 (1)

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

2012 (2)

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51(8R), 082702 (2012).
[Crossref]

2011 (2)

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(12), 2007–2018 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
[Crossref]

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

2008 (1)

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

2007 (1)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

2006 (7)

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 43–69 (2006).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

2005 (1)

2004 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

2003 (3)

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
[Crossref] [PubMed]

2001 (2)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

M. A. Osipov and H.-G. Kuball, “Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules,” Eur. Phys. J. E 5(5), 589–598 (2001).
[Crossref]

1998 (1)

1980 (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Adrian Reyes, J.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Barberi, R.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 43–69 (2006).
[Crossref]

Bian, H.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Bobrovsky, A. Y.

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

Boico, N. I.

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

Castellanos-Moreno, A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Castro-Garay, P.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Chang, S.-H.

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, L.-P.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chilaya, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Choi, H.

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

Choi, S.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Chung, K. S.

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
[Crossref] [PubMed]

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” Nanosci. Nanotechnol.in press.

Cipparrone, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Coles, H. J.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[Crossref]

Corella-Madueño, A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Cui, Y.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

De Santo, M. P.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Doyle, C.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
[Crossref] [PubMed]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Ford, A. D.

S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[Crossref]

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

Furumi, S.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

Gardiner, D. J.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Ge, Z.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Genack, A. Z.

Gim, M.-J.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Gutiérrez-López, S.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Hong, Q.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Hou, C.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Hsu, T.-Y.

Hu, Q.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Hu, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Huang, F.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Huang, Y.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[Crossref] [PubMed]

Hur, S.-T.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Il’chishin, I. P.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Ilchishin, I.

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgaplasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Ilchishin, I. P.

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Jeong, M.-Y.

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
[Crossref] [PubMed]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51(8R), 082702 (2012).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(12), 2007–2018 (2011).
[Crossref] [PubMed]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
[Crossref] [PubMed]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” Nanosci. Nanotechnol.in press.

Khan, A. A.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Kopp, V. I.

Kravchuk, R. M.

Kuball, H.-G.

M. A. Osipov and H.-G. Kuball, “Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules,” Eur. Phys. J. E 5(5), 589–598 (2001).
[Crossref]

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Kumagai, T.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Kuo, C.-T.

Lee, B. R.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Lee, C.-R.

Li, J.

Li, L.

Li, Q.

Li, Y.

Liao, Z.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Liu, B.-W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Liu, H.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Matranga, M. A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Mazzulla, A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Morris, S. M.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[Crossref]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Mykytiuk, T. V.

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Osipov, M. A.

M. A. Osipov and H.-G. Kuball, “Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules,” Eur. Phys. J. E 5(5), 589–598 (2001).
[Crossref]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Park, K.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Pei, Y.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Petriashvili, G.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

Qasim, M. M.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Qian, G.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Rosas-Burgos, R. A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
[Crossref] [PubMed]

Shen, D.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Shibaev, P. V.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

Shibaev, V. P.

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

Shpak, M. T.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Song, M. H.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
[Crossref] [PubMed]

Sun, X.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Tamaoki, N.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

Tang, B.

Tikhonov, E.

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgaplasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Tikhonov, E. A.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Tishchenko, V. G.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Vithana, H. K. M.

Wang, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Wendorff, J. H.

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

Wilkinson, T. D.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Wu, J. W.

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
[Crossref] [PubMed]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51(8R), 082702 (2012).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(12), 2007–2018 (2011).
[Crossref] [PubMed]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
[Crossref] [PubMed]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” Nanosci. Nanotechnol.in press.

Wu, S. T.

Wu, S.-T.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

Wu, T. X.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Yang, Y.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Yao, F.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Yaroshchuk, O. V.

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Yoshino, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

Yu, H.

Yu, K.-Y.

Zhang, J.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Zheng, Z.-G.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Zhou, L.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

Zhou, Y.

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Adv. Mater. (5)

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[Crossref] [PubMed]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16(910), 791–795 (2004).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-mitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[Crossref]

Appl. Phys. Lett. (4)

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89(11), 111106 (2006).
[Crossref]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Avd. Mater. (1)

A. Y. Bobrovsky, N. I. Boico, V. P. Shibaev, and J. H. Wendorff, “Photo-patternable cholesteric materials,” Avd. Mater. 15, 282–287 (2003).
[Crossref]

Dyes Pigments (1)

Y. Zhou, J. Zhang, Q. Hu, Z. Liao, Y. Cui, Y. Yang, and G. Qian, “Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films,” Dyes Pigments 116, 114–118 (2015).
[Crossref]

Eur. Phys. J. E (1)

M. A. Osipov and H.-G. Kuball, “Helical twisting power and circular dichroism in nematic liquid crystals doped with chiral molecules,” Eur. Phys. J. E 5(5), 589–598 (2001).
[Crossref]

Int. J. Mol. Sci. (1)

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12(12), 2007–2018 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106(2), 023102 (2009).
[Crossref]

S. M. Morris, A. D. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106(2), 023112 (2009).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2462–2470 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array,” J. Nanosci. Nanotechnol. 14(11), 8288–8295 (2014).
[Crossref] [PubMed]

JETP Lett. (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Jpn. J. Appl. Phys. (3)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51(8R), 082702 (2012).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, T. Kumagai, H. Kubo, A. Fujii, and M. Ozaki, “Slope efficiency improvement in mode-hop driven tunable single-mode cholesteric liquid crystal laser,” Jpn. J. Appl. Phys. 50(7R), 072702 (2011).
[Crossref]

Liq. Cryst. (1)

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 1436–1441 (2014).
[Crossref]

Mater. Today (1)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7-8), 36–42 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 43–69 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90(8), 083902 (2003).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgaplasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Soft Matter (1)

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Other (3)

M.-Y. Jeong, K. S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” Nanosci. Nanotechnol.in press.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Ch. 7.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Ch. 6.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (13271 KB)      Discontinuous laser tuning of the Parallel-cell
» Visualization 2: MP4 (13822 KB)      Continuous laser tuning of the Wedge-cell

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a continuous CLC pitch gradient developed in the W-cell by the inclination of the cell commensurate with a positive temperature gradient.

Fig. 2
Fig. 2

CMOS camera images at a fixed position of the P-cell and its PBG and laser peak spectra by the spectrophotometer; (a) 31.7 C o , (b) 32.2 C o , (c) 25.4 C o , (d) 23.4 C o , (e) 20.6 C o , (f) 20.5 C o , (g) 20.4 C o , and (h) 20.2 C o . Main (M) and sub (S) boundaries of the CLC domains move by thermal energy transfer (Visualization 1).

Fig. 3
Fig. 3

(a, c, e) CMOS camera images of the generated laser beam at the W-cells which have a positive temperature gradient. (b, d) Their PBG and laser peak spectra by the spectrophotometer, respectively. (e) Juxtapositions of 10 pieces of CLC texture images for each different lateral position, with 2 mm intervals.

Fig. 4
Fig. 4

(a) Laser lines as a function of temperature at a fixed position of the P-cell. (b) Laser lines as a function of spatial position at the W-cell at room temperature. (c) Laser lines as a function of spatial position at the W-cell with positive temperature gradient (Visualization 2). (d) Laser lines as a function of spatial position at the W-cell with negative temperature gradient.

Fig. 5
Fig. 5

Laser line spectra and PBGs of the W-cell with positive temperature gradient: (a, b) by 50 μm X-position movements, (c) by 10 μm X-position movements, (d) PBG and laser peaks change of a parallel CLC cell as a function of temperature.

Metrics