Abstract

A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers: from tool to product

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Opt. Express 23(7) 8462-8475 (2015)

Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited]

Manijeh Razeghi, Wenjia Zhou, Steven Slivken, Quan-Yong Lu, Donghai Wu, and Ryan McClintock
Appl. Opt. 56(31) H30-H44 (2017)

Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4  μm

Feng Xie, C. Caneau, H. Leblanc, M.-T. Ho, and C. Zah
Opt. Lett. 40(17) 4158-4161 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” Selected Topics in Quantum Electronics, IEEE Journal of 15(3), 941–951 (2009).
    [Crossref]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  3. J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
    [Crossref]
  4. S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
    [Crossref]
  5. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [Crossref]
  6. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
    [Crossref]
  7. N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
    [Crossref]
  8. J. Faist, Quantum Cascade Lasers (OUP Oxford, 2013).
  9. Y. Bai, High Wall Plug Efficiency Quantum Cascade Lasers (ProQuest, UMI Dissertations Publishing, 2011).
  10. S. L. Chuang, Physics of Photonic Devices (John Wiley & Sons, 2009).
  11. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
    [Crossref]
  12. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
    [Crossref]

2014 (1)

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

2013 (2)

J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

2012 (1)

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

2010 (1)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

2009 (2)

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” Selected Topics in Quantum Electronics, IEEE Journal of 15(3), 941–951 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

2008 (1)

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Chen, W.

J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Fischer, H.

J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
[Crossref]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Li, J. S.

J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
[Crossref]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” Selected Topics in Quantum Electronics, IEEE Journal of 15(3), 941–951 (2009).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Slivken, S.

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Appl. Phys. Lett. (7)

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Appl. Spectrosc. Rev. (1)

J. S. Li, W. Chen, and H. Fischer, “Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry,” Appl. Spectrosc. Rev. 48(7), 523–559 (2013).
[Crossref]

Selected Topics in Quantum Electronics, IEEE Journal of (1)

M. Razeghi, “High-performance InP-based mid-IR quantum cascade lasers,” Selected Topics in Quantum Electronics, IEEE Journal of 15(3), 941–951 (2009).
[Crossref]

Other (3)

J. Faist, Quantum Cascade Lasers (OUP Oxford, 2013).

Y. Bai, High Wall Plug Efficiency Quantum Cascade Lasers (ProQuest, UMI Dissertations Publishing, 2011).

S. L. Chuang, Physics of Photonic Devices (John Wiley & Sons, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Modal intensity vs distance inside a HQCL (b) Modal confinement factors vs energy of the different QC stages.

Fig. 2
Fig. 2

Individual gain and total modal gain of the QC stages at a current density of ~4 kA/cm2 following (a) Eq. (1.2) (b) Eq. (1.1)

Fig. 3
Fig. 3

Threshold current density as a function of emission energy for the AR coated HQCL DFBs at various wavelengths. Threshold current density of uncoated DFBs along with peak optical output power of the AR coated DFBs are also shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ji (ω)= ω ji 2 ω ( e 2 n r c ε 0 ) z ji 2 ( Γ ji 2 ) ( ω ji ω ) 2 + ( Γ ji 2 ) 2 ( N j N i )
g ji * (ω)=ω( e 2 n r c ε 0 ) z ji 2 ( Γ ji 2 ) ( ω ji ω ) 2 + ( Γ ji 2 ) 2 ( N j N i )

Metrics