Abstract

In this paper, a multiheterodyne architecture for molecular dispersion spectroscopy based on a coherent dual-comb source generated using a single continuous wave laser and electro-optic modulators is presented and validated. The phase-sensitive scheme greatly simplifies previous dual-comb implementations by the use of an electro-optic dual comb and by phase-locking all the signal generators of the setup eliminating, in this way, the necessity of any reference optical path currently mandatory in absorption-based instruments. The architecture is immune to the classical baseline and normalization problems of absorption-based analyzers and provides an output linearly dependent on the gas concentration. In addition, the simultaneous parallel multi-wavelength measurement approach has the ability to deliver an improved output bandwidth (measurement speed) over gas analyzers based on tunable lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time

Pedro Martín-Mateos, Borja Jerez, Pedro Largo-Izquierdo, and Pablo Acedo
Opt. Express 26(8) 9700-9713 (2018)

Dual optical frequency comb architecture with capabilities from visible to mid-infrared

Borja Jerez, Pedro Martín-Mateos, Estefanía Prior, Cristina de Dios, and Pablo Acedo
Opt. Express 24(13) 14986-14994 (2016)

Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility

Bingxin Xu, Xinyu Fan, Shuai Wang, and Zuyuan He
Opt. Express 27(6) 9266-9275 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Roschdestwensky, “Anomale dispersion im natriumdampf,” Ann. Phys. 344(12), 307–345 (1912).
    [Crossref]
  2. P. van de Weijer and R. M. M. Cremers, “Hook method: improvement and simplification of the experimental setup,” Appl. Opt. 22(22), 3500–3502 (1983).
    [Crossref] [PubMed]
  3. E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
    [Crossref]
  4. R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
    [Crossref]
  5. A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980).
    [Crossref]
  6. S. Marchetti and R. Simili, “Measurement of the refractive index dispersion around an absorbing line,” Opt. Commun. 249(1–3), 37–41 (2005).
    [Crossref]
  7. A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
    [Crossref]
  8. J. R. Birch and M. N. Afsar, “The rotation spectrum of methyl alcohol vapour between 8 and 50 cm−1,” Spectrochim. Acta, Part A 35(6), 669–672 (1979).
  9. J. R. Birch, “Recent progress in dispersive fourier transform spectrometry,” Proc. SPIE 0289, 362–384 (1981).
    [Crossref]
  10. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
    [Crossref] [PubMed]
  11. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
    [Crossref] [PubMed]
  12. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2(9), 1510–1526 (1985).
    [Crossref]
  13. G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
    [Crossref] [PubMed]
  14. M. Nikodem and G. Wysocki, “Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing,” Sensors (Basel) 12(12), 16466–16481 (2012).
    [Crossref] [PubMed]
  15. P. Martín-Mateos and P. Acedo, “Heterodyne phase-sensitive detection for calibration-free molecular dispersion spectroscopy,” Opt. Express 22(12), 15143–15153 (2014).
    [Crossref] [PubMed]
  16. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  17. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
    [Crossref] [PubMed]
  18. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
    [Crossref] [PubMed]
  19. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  20. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  21. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  22. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [Crossref] [PubMed]
  23. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  24. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  25. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
    [Crossref] [PubMed]
  26. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
    [Crossref]
  27. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref] [PubMed]
  28. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
    [Crossref]
  29. D. P. Blair and P. H. Sydenham, “Phase sensitive detection as a means to recover signals buried in noise,” J. Phys. Educ. 8(8), 621–627 (1975).
  30. P. Martín-Mateos, S. Crespo-Garcia, M. Ruiz-Llata, J. R. Lopez-Fernandez, J. L. Jorcano, M. Del Rio, F. Larcher, and P. Acedo, “Remote diffuse reflectance spectroscopy sensor for tissue engineering monitoring based on blind signal separation,” Biomed. Opt. Express 5(9), 3231–3237 (2014).
    [Crossref] [PubMed]
  31. J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
    [Crossref]
  32. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]
  33. G. Plant, M. Nikodem, D. M. Sonnenfroh, and G. Wysocki, “Chirped laser dispersion spectroscopy for remote sensing of methane at 1.65µm - analysis of system performance,” in CLEO:2013 OSA Technical Digest Series (Optical Society of America, 2013), paper JW2A.79.
  34. P. Martín-Mateos, B. Jerez, and P. Acedo, “Heterodyne architecture for tunable laser chirped dispersion spectroscopy using optical processing,” Opt. Lett. 39(9), 2611–2613 (2014).
    [Crossref] [PubMed]

2015 (1)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

2014 (4)

2012 (1)

M. Nikodem and G. Wysocki, “Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing,” Sensors (Basel) 12(12), 16466–16481 (2012).
[Crossref] [PubMed]

2011 (1)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

2010 (4)

G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

2008 (1)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

2007 (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
[Crossref]

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

2002 (1)

2000 (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

1999 (1)

J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
[Crossref]

1998 (1)

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

1992 (1)

1985 (1)

1983 (1)

1981 (1)

J. R. Birch, “Recent progress in dispersive fourier transform spectrometry,” Proc. SPIE 0289, 362–384 (1981).
[Crossref]

1980 (3)

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
[Crossref] [PubMed]

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980).
[Crossref]

1979 (1)

J. R. Birch and M. N. Afsar, “The rotation spectrum of methyl alcohol vapour between 8 and 50 cm−1,” Spectrochim. Acta, Part A 35(6), 669–672 (1979).

1978 (1)

A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
[Crossref]

1975 (1)

D. P. Blair and P. H. Sydenham, “Phase sensitive detection as a means to recover signals buried in noise,” J. Phys. Educ. 8(8), 621–627 (1975).

1912 (1)

D. Roschdestwensky, “Anomale dispersion im natriumdampf,” Ann. Phys. 344(12), 307–345 (1912).
[Crossref]

Abgrall, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Acedo, P.

Afsar, M. N.

J. R. Birch and M. N. Afsar, “The rotation spectrum of methyl alcohol vapour between 8 and 50 cm−1,” Spectrochim. Acta, Part A 35(6), 669–672 (1979).

A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
[Crossref]

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bielska, K.

Birch, J. R.

J. R. Birch, “Recent progress in dispersive fourier transform spectrometry,” Proc. SPIE 0289, 362–384 (1981).
[Crossref]

J. R. Birch and M. N. Afsar, “The rotation spectrum of methyl alcohol vapour between 8 and 50 cm−1,” Spectrochim. Acta, Part A 35(6), 669–672 (1979).

A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
[Crossref]

Bjorklund, G. C.

Blair, D. P.

D. P. Blair and P. H. Sydenham, “Phase sensitive detection as a means to recover signals buried in noise,” J. Phys. Educ. 8(8), 621–627 (1975).

Brehm, M.

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Chodzko, R.

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

Chou, C. W.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Clairon, A.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Coddington, I.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

Coffer, J.

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

Cremers, R. M. M.

Crespo-Garcia, S.

Del Rio, M.

Diddams, S. A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Douglass, K. O.

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Duval, A. B.

A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980).
[Crossref]

Fleisher, A. J.

Fortier, T. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Gehrtz, M.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Gohle, C.

Gross, R.

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hansch, T. W.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hodges, J. T.

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Hume, D. B.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Irby, J.

J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
[Crossref]

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jerez, B.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Jorcano, J. L.

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
[Crossref]

Keilmann, F.

Kemp, A. J.

A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
[Crossref]

Kettlitz, M.

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

Kindel, E.

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Lamela, H.

J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
[Crossref]

Larcher, F.

Laurent, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Lemonde, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Long, D. A.

Lopez-Fernandez, J. R.

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Marchetti, S.

S. Marchetti and R. Simili, “Measurement of the refractive index dispersion around an absorbing line,” Opt. Commun. 249(1–3), 37–41 (2005).
[Crossref]

Martin-Mateos, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Martín-Mateos, P.

Maxwell, S. E.

McIntosh, A. I.

A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980).
[Crossref]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Murray, R.

J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
[Crossref]

Newbury, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref] [PubMed]

Niering, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Nikodem, M.

M. Nikodem and G. Wysocki, “Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing,” Sensors (Basel) 12(12), 16466–16481 (2012).
[Crossref] [PubMed]

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Plusquellic, D. F.

Pokasov, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Posada-Roman, J.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Reichert, J.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Roschdestwensky, D.

D. Roschdestwensky, “Anomale dispersion im natriumdampf,” Ann. Phys. 344(12), 307–345 (1912).
[Crossref]

Rosenband, T.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Ruiz-Llata, M.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

P. Martín-Mateos, S. Crespo-Garcia, M. Ruiz-Llata, J. R. Lopez-Fernandez, J. L. Jorcano, M. Del Rio, F. Larcher, and P. Acedo, “Remote diffuse reflectance spectroscopy sensor for tissue engineering monitoring based on blind signal separation,” Biomed. Opt. Express 5(9), 3231–3237 (2014).
[Crossref] [PubMed]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
[Crossref]

Salomon, C.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Santarelli, G.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Schiller, S.

Schimke, C.

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

Schliesser, A.

Schmidt, P. O.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Schöpp, H.

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

Silver, J. A.

Simili, R.

S. Marchetti and R. Simili, “Measurement of the refractive index dispersion around an absorbing line,” Opt. Commun. 249(1–3), 37–41 (2005).
[Crossref]

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Swann, W.

Swann, W. C.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref] [PubMed]

Sydenham, P. H.

D. P. Blair and P. H. Sydenham, “Phase sensitive detection as a means to recover signals buried in noise,” J. Phys. Educ. 8(8), 621–627 (1975).

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Turner, E.

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

van de Weijer, P.

van der Weide, D.

Washburn, B. R.

Weidmann, D.

Weitz, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Whittaker, E. A.

Wineland, D. J.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Wysocki, G.

M. Nikodem and G. Wysocki, “Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing,” Sensors (Basel) 12(12), 16466–16481 (2012).
[Crossref] [PubMed]

G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
[Crossref] [PubMed]

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Ann. Phys. (1)

D. Roschdestwensky, “Anomale dispersion im natriumdampf,” Ann. Phys. 344(12), 307–345 (1912).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Infrared Phys. (1)

A. J. Kemp, J. R. Birch, and M. N. Afsar, “The refractive index of water vapour: a comparison of measurement and theory,” Infrared Phys. 18(5–6), 827–833 (1978).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980).
[Crossref]

E. Kindel, M. Kettlitz, C. Schimke, and H. Schöpp, “Application of the hook method and emission spectroscopy for the determination of radial density and temperature profiles in high-pressure mercury discharges,” J. Phys. D Appl. Phys. 31(11), 1352–1361 (1998).
[Crossref]

J. Phys. Educ. (1)

D. P. Blair and P. H. Sydenham, “Phase sensitive detection as a means to recover signals buried in noise,” J. Phys. Educ. 8(8), 621–627 (1975).

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Opt. Commun. (1)

S. Marchetti and R. Simili, “Measurement of the refractive index dispersion around an absorbing line,” Opt. Commun. 249(1–3), 37–41 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Phys. Rev. Lett. (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

J. R. Birch, “Recent progress in dispersive fourier transform spectrometry,” Proc. SPIE 0289, 362–384 (1981).
[Crossref]

Rev. Sci. Instrum. (1)

J. Irby, R. Murray, P. Acedo, and H. Lamela, “A two-color interferometer using a frequency doubled diode pumped laser for electron density measurements,” Rev. Sci. Instrum. 70(1), 699–702 (1999).
[Crossref]

Science (2)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Nikodem and G. Wysocki, “Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing,” Sensors (Basel) 12(12), 16466–16481 (2012).
[Crossref] [PubMed]

Spectrochim. Acta, Part A (1)

J. R. Birch and M. N. Afsar, “The rotation spectrum of methyl alcohol vapour between 8 and 50 cm−1,” Spectrochim. Acta, Part A 35(6), 669–672 (1979).

Other (1)

G. Plant, M. Nikodem, D. M. Sonnenfroh, and G. Wysocki, “Chirped laser dispersion spectroscopy for remote sensing of methane at 1.65µm - analysis of system performance,” in CLEO:2013 OSA Technical Digest Series (Optical Society of America, 2013), paper JW2A.79.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Basic scheme of the dual-comb multiheterodyne dispersion gas analyzer. LD, Laser diode; PM, Electro-optic phase modulator; GS, Gas sample; AOM, Acousto-optic modulator, SG1, Signal generator at frequency fPM1; SG2, Signal generator at frequency fPM2; SG3, Signal generator at frequency fAOM; FPC, Fiber polarization controller; DGT, Digitization..
Fig. 2
Fig. 2 (a) Profile of the index of refraction of a molecular transition line. (b) Spectrum of an ideal optical frequency comb. (c) Phase shifts induced in the teeth of the comb as a result of the propagation through a gaseous sample.
Fig. 3
Fig. 3 Ideal optical spectrum of the measurement and LO combs generated by the setup of Fig. 1.
Fig. 4
Fig. 4 Detailed block diagram of the dual-comb multiheterodyne dispersion gas analyzer. RFO, Reference frequency oscillator; SG1, Signal generator at frequency fPM1 ; SG2, Signal generator at frequency fPM2 ; SG3, Signal generator at frequency fAOM; SG3, Signal generator for the acquisition clock; LD, Laser diode; PM, Electro-optic phase modulator; GS, Gas sample; AOM, Acousto-optic modulator; FPC, Fiber polarization controller; PD, Photodiode; BPF, Band-pass filter; ACQ, Acquisition hardware; L-I D, Multi-channel lock-in detector. As a reference, the typical spectrum of the optical (bottom left) and a RF (bottom right) combs generated by the setup are shown for repetition frequencies of 8 GHz and 100 kHz respectively. The spectral coverage of the OFCs is roughly 2.6 nm.
Fig. 5
Fig. 5 Phase shift induced in the teeth of the measurement OFC by the spectral feature as a function of the optical detuning (dots). The continuous line represents the fit of the results.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ f 0 = 2π f 0 L c [ n( f 0 )1 ]
E n =Acos( 2π( f c +n f PM1 )t )
E n =Acos( 2π( f c +n f PM1 )t φ n )
φ n = 2π( f c +n f PM1 )L c [ n( f c +n f PM1 )1 ]
E n LO =Acos( 2π( f c f AOM +n f PM2 )t )
I n cos( 2π( f AOM +n( f PM1 f PM2 ) )t φ n )
f n = f AOM +n( f PM1 f PM2 )
t int =n 1 f PM2 f PM1
( f PM2 f PM1 ) max = 2 f AOM N m

Metrics