Abstract

Microvibrations that occur in bio-tissues are considered to play pivotal roles in organ function; however techniques for their measurement have remained underdeveloped. To address this issue, in the present study we have developed a novel optical coherence tomography (OCT) method that utilizes multifrequency swept interferometry. The OCT volume data can be acquired by sweeping the multifrequency modes produced by combining a tunable Fabry-Perot filter and an 840 nm super-luminescent diode with a bandwidth of 160 nm. The system employing the wide-field heterodyne method does not require mechanical scanning probes, which are usually incorporated in conventional Doppler OCTs and heterodyne-type interferometers. These arrangements allow obtaining not only 3D tomographic images but also various vibration parameters such as spatial amplitude, phase, and frequency, with high temporal and transverse resolutions over a wide field. Indeed, our OCT achieved the axial resolution of ~2.5 μm when scanning the surface of a glass plate. Moreover, when examining a mechanically resonant multilayered bio-tissue in full-field configuration, we captured 22 nm vibrations of its internal surfaces at 1 kHz by reconstructing temporal phase variations. This so-called “multifrequency swept common-path en-face OCT” can be applied for measuring microdynamics of a variety of biological samples, thus contributing to the progress in life sciences research.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues

Samuel Choi, Keita Sato, Takeru Ota, Fumiaki Nin, Shogo Muramatsu, and Hiroshi Hibino
Biomed. Opt. Express 8(2) 608-621 (2017)

Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties

Andromachi P. Michalopoulou, Jason T. Fitzgerald, Christoph Troppmann, and Stavros G. Demos
Appl. Opt. 44(11) 2024-2032 (2005)

In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography

Simon S. Gao, Patrick D. Raphael, Rosalie Wang, Jesung Park, Anping Xia, Brian E. Applegate, and John S. Oghalai
Biomed. Opt. Express 4(2) 230-240 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
    [Crossref] [PubMed]
  2. F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
    [Crossref] [PubMed]
  3. F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
    [Crossref] [PubMed]
  4. S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
    [Crossref] [PubMed]
  5. S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
    [Crossref] [PubMed]
  6. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
    [Crossref] [PubMed]
  7. B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
    [Crossref] [PubMed]
  8. E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
    [Crossref] [PubMed]
  9. S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
    [Crossref] [PubMed]
  10. J. Leval, P. Picart, J. P. Boileau, and J. C. Pascal, “Full-field vibrometry with digital Fresnel holography,” Appl. Opt. 44(27), 5763–5772 (2005).
    [Crossref] [PubMed]
  11. P. Picart, J. Leval, J. C. Pascal, J. P. Boileau, M. Grill, J. M. Breteau, B. Gautier, and S. Gillet, “2D full field vibration analysis with multiplexed digital holograms,” Opt. Express 13(22), 8882–8892 (2005).
    [Crossref] [PubMed]
  12. M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
    [Crossref] [PubMed]
  13. C. Trillo, A. F. Doval, F. Mendoza-Santoyo, C. Pérez-López, M. de la Torre-Ibarra, and J. L. Deán, “Multimode vibration analysis with high-speed TV holography and a spatiotemporal 3D Fourier transform method,” Opt. Express 17(20), 18014–18025 (2009).
    [Crossref] [PubMed]
  14. Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
    [Crossref]
  15. S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
    [Crossref]
  16. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
    [Crossref] [PubMed]
  17. T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
    [Crossref]
  18. J. Schwider, “White-light Fizeau interferometer,” Appl. Opt. 36(7), 1433–1437 (1997).
    [Crossref] [PubMed]
  19. B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
    [Crossref]
  20. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun. 282(16), 3308–3324 (2009).
    [Crossref]
  21. S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
    [Crossref]
  22. S. Choi, K. Otsuki, O. Sasaki, and T. Suzuki, “Profile measurement of glass sheet using multiple wavelength backpropagation interferometry,” Appl. Opt. 52(16), 3726–3731 (2013).
    [Crossref] [PubMed]
  23. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]

2015 (1)

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

2014 (2)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

2013 (4)

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
[Crossref]

S. Choi, K. Otsuki, O. Sasaki, and T. Suzuki, “Profile measurement of glass sheet using multiple wavelength backpropagation interferometry,” Appl. Opt. 52(16), 3726–3731 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

2010 (1)

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

2009 (2)

2008 (1)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

2007 (1)

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

2006 (4)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[Crossref] [PubMed]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
[Crossref] [PubMed]

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

2005 (2)

1997 (1)

1982 (1)

Akca, I. B.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Applegate, B. E.

Banh, T. Q.

T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
[Crossref]

Bekesi, N.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Boileau, J. P.

Breteau, J. M.

Chang, E. W.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref] [PubMed]

Chen, F.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Cheng, J. T.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Choi, S.

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

S. Choi, K. Otsuki, O. Sasaki, and T. Suzuki, “Profile measurement of glass sheet using multiple wavelength backpropagation interferometry,” Appl. Opt. 52(16), 3726–3731 (2013).
[Crossref] [PubMed]

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
[Crossref] [PubMed]

Choudhury, N.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

de la Torre-Ibarra, M.

Deán, J. L.

Doval, A. F.

Freeman, D. M.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[Crossref] [PubMed]

Fridberger, A.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Furlong, C.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Gao, S. S.

Gautier, B.

Gillet, S.

Grill, M.

Groves, A. K.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Hayes, J.

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

Hong, S. S.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[Crossref] [PubMed]

Ina, H.

Jacques, S. L.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Khaleghi, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Kimbrough, B.

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

Kling, S.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Kobayashi, S.

Kobler, J. B.

Kurokawa, T.

Leval, J.

Marcos, S.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Matthews, S.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Mendoza-Santoyo, F.

Millerd, J.

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

Miyatsuka, H.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

Moayedi, Y.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Moteki, D.

Nutall, A. L.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

Nuttall, A. L.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Oghalai, J. S.

Otsuki, K.

Park, J.

Pascal, J. C.

Pérez-López, C.

Picart, P.

Raphael, P. D.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Ravicz, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Rosowski, J. J.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Sasaki, O.

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

S. Choi, K. Otsuki, O. Sasaki, and T. Suzuki, “Profile measurement of glass sheet using multiple wavelength backpropagation interferometry,” Appl. Opt. 52(16), 3726–3731 (2013).
[Crossref] [PubMed]

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

Sato, M.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Scarcelli, G.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Schwider, J.

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun. 282(16), 3308–3324 (2009).
[Crossref]

J. Schwider, “White-light Fizeau interferometer,” Appl. Opt. 36(7), 1433–1437 (1997).
[Crossref] [PubMed]

Shelton, R. L.

Shi, X.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Shioda, T.

T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
[Crossref]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
[Crossref] [PubMed]

Song, G.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Suzuki, K.

T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
[Crossref]

Suzuki, T.

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

S. Choi, K. Otsuki, O. Sasaki, and T. Suzuki, “Profile measurement of glass sheet using multiple wavelength backpropagation interferometry,” Appl. Opt. 52(16), 3726–3731 (2013).
[Crossref] [PubMed]

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

Takeda, M.

Tanaka, Y.

Trillo, C.

Tschinkel, T.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Wang, R.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Wang, R. K.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Watanabe, T.

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

Watanabe, Y.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Wyant, J.

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

Xia, A.

Yamamoto, M.

Yun, S. H.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref] [PubMed]

Zha, D.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Zheng, J.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Zuo, J.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Hear. Res. (1)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[Crossref] [PubMed]

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

J. Neurophysiol. (1)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. R. Soc. Interface (1)

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Nat. Neurosci. (1)

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Opt. Commun. (3)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun. 282(16), 3308–3324 (2009).
[Crossref]

T. Q. Banh, K. Suzuki, and T. Shioda, “Development of an incoherent optical frequency comb interferometer for long-range and scanless profilometry and tomography,” Opt. Commun. 296, 1–8 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (3)

B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Proc. SPIE 6292, 62920F (2006).
[Crossref]

S. Choi, T. Watanabe, O. Sasaki, and T. Suzuki, “OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method,” Proc. SPIE 8839, 88390D (2013).
[Crossref]

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using optical comb light source and sinusoidal phase modulation technique in Fizeau-type interferometer,” Proc. SPIE 7855, 78550K (2010).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (402 KB)      Reconstructed temporal displacement changes of four internal surfaces at the depth of region I. The cycles of vibrations of sectioned interior surfaces at the depth of 728 and 735 ?m are expressed as the color changes assigned to the displacement cha
» Visualization 2: MOV (193 KB)      Reconstructed temporal displacement changes of four internal surfaces at the depth of region II. The vibrations of sectioned interior surfaces at the depth of 859 and 900 ?m are expressed as the color changes assigned to the displacement changes

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Axial scanning method using Nth interference position.

Fig. 2
Fig. 2

Two-dimensional vibration measurement using the wide-field heterodyne detection technique.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Spectral characteristics of a multispectral light source. (a) Overall spectrum. (b) Generated multifrequency components in the 840 – 860 nm range. (c) Computed scan length d as a function of supply voltage to the piezo lens positioner amounted to the FPF.

Fig. 5
Fig. 5

Measurement results obtained by using a glass plate sample. (a) A-scan interferogram obtained from one CCD pixel. (b) Expanded view of the interference fringe of the first peak (front plane) and (c) second peak (rear plane). Red plots represent the interference amplitude. (d) 2D tomographic image of the glass plate at x = 1.2 mm.

Fig. 6
Fig. 6

3D volume-rendered image of fixed mouse kidney tissue. In the image, sectioned regions of front surface layers (I), internal layers (II), and bonding surface affixed to a slide (III) are observed.

Fig. 7
Fig. 7

Spatial distributions of the frequency components. Intensity distributions of (a) F(0) and (b) F(δf) for the internal surface at the depths of 859 μm. The reconstructed distribution of (c) BpJ0(Zr)J0(Zs) and (d) BpJ1(Zr)J1(Zs) obtained by the image processing based on 2D Fourier filtering method.

Fig. 8
Fig. 8

Vibration characteristics of sectioned surfaces. (a), (b), (c) and (d) Spatial distributions of Ζs at the depth of 728μm, 735μm, 859μm and 900μm, respectively. (e), (f), (g), and (h) Spatial distributions of δϕ at the depth of 728μm, 735μm, 859μm and 900μm, respectively. (i), (j), (k) and (l) Interference phase distributions α0 of each measured internal surface. The measurement data where the interference intensity was below 20% of maximum were reduced from each result.

Fig. 9
Fig. 9

Reconstructed temporal displacement changes of four internal surfaces at the depth of region I. The cycles of vibrations of sectioned interior surfaces at the depth of 728 and 735 μm are expressed as the color changes assigned to the displacement changes (Visualization 1).

Fig. 10
Fig. 10

Reconstructed temporal displacement changes of four internal surfaces at the depth of region II. The vibrations of sectioned interior surfaces at the depth of 859 and 900 μm are expressed as the color changes assigned to the displacement changes (Visualization 2).

Fig. 11
Fig. 11

Average vibration amplitudes and spatial amplitude distributions Zs at the depth of 735 μm obtained by varying the supply voltage to the PZT. Error bars on the plots denote the SD values.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SN(d)=A+ B N (d l 1 N )cos( α 1 ), α 1 =4π( l 1 Nd λ ),
S N (t)=A+ B P cos{ α P + 4π λ c a s cos(2π f s t+ ϕ s )+ 4π λ c a r cos(2π f r t+ ϕ r )} =A+ B P cos{ α P + Z s cos(2π f s t+ ϕ s )+ Z r cos(2π f r t+ ϕ r )},
S N (t)=A+ B P cos( α P ) J 0 ( Z r ) J 0 ( Z s )+2 B P cos( α P ) J 1 ( Z r ) J 1 ( Z s )cos(2πδft+δϕ),
R 01 ( Z s )= | J 0 ( Z r ) J 0 ( Z s ) | | J 1 ( Z r ) J 1 ( Z s ) | K| J 0 ( Z s ) J 1 ( Z s ) |,
Φ(x,y,t)= α 0 (x,y)+ z s (x,y)cos(2π(δf(x,y))t+δϕ(x,y)).

Metrics