Abstract

We report on an Yb:YAG thin-disk multipass laser amplifier delivering sub-8 ps pulses at a wavelength of 1030 nm with 1420 W of average output power and 4.7 mJ of pulse energy. The amplifier is seeded by a regenerative amplifier delivering 6.5 ps pulses with 300 kHz of repetition rate and an average power of 115 W. The optical efficiency of the multipass amplifier was measured to be 48% and the beam quality factor was better than M2 = 1.4. Furthermore we report on the external second harmonic generation from 1030 nm to 515 nm using an LBO crystal leading to an output power of 820 W with 2.7 mJ of energy per pulse. This corresponds to a conversion efficiency of 70%. Additionally, 234 W of average power were obtained at the third harmonic with a wavelength of 343 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm

Jakub Novák, Jonathan T. Green, Thomas Metzger, Tomáš Mazanec, Bedřich Himmel, Martin Horáček, Zbyněk Hubka, Robert Boge, Roman Antipenkov, František Batysta, Jack A. Naylon, Pavel Bakule, and Bedřich Rus
Opt. Express 24(6) 5728-5733 (2016)

1.1  kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses

Jan-Philipp Negel, Andreas Voss, Marwan Abdou Ahmed, Dominik Bauer, Dirk Sutter, Alexander Killi, and Thomas Graf
Opt. Lett. 38(24) 5442-5445 (2013)

Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier

M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella
Opt. Express 20(5) 5038-5043 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
    [Crossref]
  2. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
    [Crossref]
  3. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
    [Crossref] [PubMed]
  4. B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
    [Crossref] [PubMed]
  5. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590U (February 28, 2014).
  6. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
    [Crossref] [PubMed]
  7. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
    [Crossref] [PubMed]
  8. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  9. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
    [Crossref] [PubMed]
  10. C. R. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
    [Crossref] [PubMed]
  11. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  12. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
    [Crossref] [PubMed]
  13. H. J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
    [Crossref] [PubMed]
  14. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref] [PubMed]
  15. P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
    [Crossref]
  16. T. Metzger, M. Gorjan, M. Ueffing, C. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, “Picosecond Thin-Disk Lasers,“ Conference on Lasers and Electro-Optics CLEO 2014, invited paper JTh4L.
  17. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
    [Crossref]
  18. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express 20(5), 5038–5043 (2012).
    [Crossref] [PubMed]
  19. M. Schulz, H. Hoeppner, M. Temme, R. Riedel, B. Faatz, M. J. Prandolini, M. Drescher, and F. Tavella, “14 kilowatt burst average power from 2-stage cascaded Yb:YAG thin-disk multipass amplifier,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4A.2.
  20. J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  21. A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).
  22. C. Stolzenburg, W. Schüle, V. Angrick, M. Bouzid and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590O (February 28, 2014).
  23. B. Gronloh, P. Russbueldt, B. Jungbluth, and H. Hoffmann, “Green sub-ps laser exceeding 400 W of average power,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590T (February 28, 2014).
  24. P. Zhu, D. Li, Q. Liu, J. Chen, S. Fu, P. Shi, K. Du, and P. Loosen, “39.1 μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate,” Opt. Lett. 38(22), 4716–4718 (2013).
    [Crossref] [PubMed]
  25. D. Sangla, J. Saby, B. Cocquelin, and F. Salin,”High power picosecond fiber laser emitting 50 W at 343 nm at 80 MHz,” Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370N (February 9, 2012).
  26. D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
    [Crossref]
  27. J. Negel, A. Loescher, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “Ultrafast thin-disk amplifier with 1.4 kW average power and 4.7 mJ pulse energy at 1030 nm converted to 820 W and 2.7 mJ at 515 nm,” Proc. SPIE 9342, Solid State Lasers XXIV: Technology and Devices, 93420V (26 March 2015).
  28. D. Müller, S. Erhard, O. Ronsin, and A. Giesen, “Thin disk multi-pass amplifier,” OSA Trends in Optics and Photonics. 1, paper 278 (2003).
  29. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 20530–20539 (2008).
    [Crossref] [PubMed]
  30. J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
    [Crossref]
  31. D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34(14), 2159–2161 (2009).
    [Crossref] [PubMed]

2015 (2)

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

2014 (5)

2013 (4)

2012 (6)

M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express 20(5), 5038–5043 (2012).
[Crossref] [PubMed]

C. R. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (2)

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34(14), 2159–2161 (2009).
[Crossref] [PubMed]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

2008 (1)

2005 (1)

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Abdou Ahmed, M.

Abdou-Ahmed, M.

Ahmed, M. A.

Amaro, F. D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Andersen, T. V.

Antognini, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Apolonskiy, A.

Baer, C. R.

Bai, Z.

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Balembois, F.

Bauer, D.

Berger, P.

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

Biraben, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Breitkopf, S.

Brons, J.

Castaing, M.

Chen, D.

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Chen, J.

Chen, M.

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Dax, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Dekorsy, T.

Drescher, M.

Druon, F.

Du, K.

Düsterer, S.

Eidam, T.

Emaury, F.

Esser, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Faatz, B.

Fedulova, E.

Feldhaus, J.

Feuer, A.

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

Freitag, C.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

Fu, S.

Gabler, T.

Georges, P.

Giesen, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Golling, M.

Gottschall, T.

Graf, T.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Guina, M.

Hädrich, S.

Hanf, S.

Hänsch, T. W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Heckl, O. H.

Hermanutz, F.

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Heumann, E.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Hofer, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Hoffmann, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Hoffmann, H. D.

Hoffmann, M.

Hönninger, C.

Huber, G.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Indelicato, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Ingildeev, D.

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Jaffres, A.

Jauregui, C.

Johannsen, J.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Julien, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Kalashnikov, V.

Kao, C.-Y.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Keller, U.

Kienel, M.

Killi, A.

Kleinbauer, J.

Klenke, A.

Knowles, P. E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Kottmann, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Kränkel, C.

Kraus, M.

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Krausz, F.

Kumkar, M.

Kunz, C.

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Le Bigot, E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Li, D.

Li, G.

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Limpert, J.

Liu, Q.

Liu, Y.-W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Loescher, A.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

Lohring, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Loiseau, P.

Loosen, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

P. Zhu, D. Li, Q. Liu, J. Chen, S. Fu, P. Shi, K. Du, and P. Loosen, “39.1 μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate,” Opt. Lett. 38(22), 4716–4718 (2013).
[Crossref] [PubMed]

Ludhova, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Luttmann, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Mans, T.

Meissner, A.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Modsching, N.

Mond, M.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Moschüring, N.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Mottay, E.

Mulhauser, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Nebel, T.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Negel, J.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

Negel, J. P.

Neuhaus, J.

Nez, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Onuseit, V.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Otto, H. J.

Pan, Y.

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Pervak, V.

Petermann, K.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Piehler, S.

Pohl, R.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Poprawe, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

Prandolini, M. J.

Pronin, O.

Rabinowitz, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Ricaud, S.

Riedel, R.

Romero, J. J.

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Rossbach, J.

Rothhardt, J.

Russbueldt, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

Rytz, D.

Sangla, D.

Saraceno, C. J.

Sartorius, T.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Schreiber, T.

Schriber, C.

Schuhmann, K.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Schulz, M.

Schwob, C.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Seise, E.

Shi, P.

Stutzki, F.

Südmeyer, T.

Suganuma, A.

Sutter, D.

Sutter, D. H.

Taqqu, D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

Tavella, F.

Traub, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Tünnermann, A.

Viana, B.

Voss, A.

Weber, R.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Weichelt, B.

Weiler, S.

Weitenberg, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

Wentsch, K.

Wester, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Wiedenmann, M.

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

Willner, A.

Wirth, C.

Zhang, J.

Zhu, P.

Appl. Phys. B (1)

J. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann, “Continuous-wave laser action of Yb3+-doped lanthanum scandium borate,” Appl. Phys. B 80(2), 159–163 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Freitag, M. Wiedenmann, J. Negel, A. Loescher, V. Onuseit, R. Weber, M. Abdou Ahmed, and T. Graf, “High quality processing of CFRP with a 1.1 kW picosecond laser,” Appl. Phys., A Mater. Sci. Process. 119(4), 1237–1243 (2015).
[Crossref]

Erratum Optics Express (1)

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22 (9), 11312-11324 (May 2014) +, Erratum Optics Express 22(23), 28232–28233 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 447–463 (2015).
[Crossref]

Opt. Eng. (1)

D. Chen, Z. Bai, Y. Pan, M. Chen, and G. Li, “Two-millijoule, 1 kHz, 355-nm picosecond laser pulse generation in LiB3O5 crystal,” Opt. Eng. 52(8), 086107 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (12)

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref] [PubMed]

H. J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34(14), 2159–2161 (2009).
[Crossref] [PubMed]

P. Zhu, D. Li, Q. Liu, J. Chen, S. Fu, P. Shi, K. Du, and P. Loosen, “39.1 μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate,” Opt. Lett. 38(22), 4716–4718 (2013).
[Crossref] [PubMed]

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

Proc. (1)

A. Feuer, C. Kunz, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Influence of laser parameters on quality of microholes and process efficiency,” Proc. 8967, 89670H (2014).

Other (8)

C. Stolzenburg, W. Schüle, V. Angrick, M. Bouzid and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590O (February 28, 2014).

B. Gronloh, P. Russbueldt, B. Jungbluth, and H. Hoffmann, “Green sub-ps laser exceeding 400 W of average power,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590T (February 28, 2014).

D. Sangla, J. Saby, B. Cocquelin, and F. Salin,”High power picosecond fiber laser emitting 50 W at 343 nm at 80 MHz,” Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370N (February 9, 2012).

J. Negel, A. Loescher, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “Ultrafast thin-disk amplifier with 1.4 kW average power and 4.7 mJ pulse energy at 1030 nm converted to 820 W and 2.7 mJ at 515 nm,” Proc. SPIE 9342, Solid State Lasers XXIV: Technology and Devices, 93420V (26 March 2015).

D. Müller, S. Erhard, O. Ronsin, and A. Giesen, “Thin disk multi-pass amplifier,” OSA Trends in Optics and Photonics. 1, paper 278 (2003).

M. Schulz, H. Hoeppner, M. Temme, R. Riedel, B. Faatz, M. J. Prandolini, M. Drescher, and F. Tavella, “14 kilowatt burst average power from 2-stage cascaded Yb:YAG thin-disk multipass amplifier,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4A.2.

T. Metzger, M. Gorjan, M. Ueffing, C. Teisset, M. Schultze, R. Bessing, M. Häfner, S. Prinz, D. Sutter, K. Michel, H. Barros, Z. Major, and F. Krausz, “Picosecond Thin-Disk Lasers,“ Conference on Lasers and Electro-Optics CLEO 2014, invited paper JTh4L.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590U (February 28, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Setup of the multipass amplifier. A modified version of the commercially available TruMicro 5050 laser was used as the seed laser. In combination with the end mirror and the quarter-wave plate in front of it, the thin-film polarizer (TFP) enables a double-pass through the amplifier set-up. The multipass amplifier itself consists of an array with 40 mirrors (details see text and Fig. 2), the thin-disk in a pump cavity, a plane folding mirror M1 and the retroreflecting mirror pair (RMP) next to the disk.
Fig. 2
Fig. 2 Backside view of the mirror array including a projection of the thin-disk, the mirrors M1 and M20-21 and the RMP to illustrate the propagation in the amplifier in analogy to the original concept described in [17]. The seed pulse passes the components as follows: 1 ➔ thin-disk ➔ 2 ➔ RMP ➔ 3 ➔ thin-disk ➔ 4 ➔ M1 ➔ 5 ➔ thin-disk ➔ 6 and so forth. M20-21 is needed to access the upper and lower line of mirrors.
Fig. 3
Fig. 3 Beam diameter depicted over the whole propagation length inside the multipass amplifier. Red lines indicate the position of the thin-disk, green lines positions of mirror M1, and blue lines of the RMP. a) Beam diameter without the influence of a thermal lens on the disk and with M2 = 1. b) Influence of a thermal lens of fthermal = −15 m (for illustration). The oscillation is less steep and the pick-up of B-integral is significantly reduced.
Fig. 4
Fig. 4 Output powers of the amplifier with 40 passes over the disk for different seed powers and repetition rates. A maximum output power of 1420 W was reached with a seed power of 115 W at a pump power of 2700 W and 300 kHz repetition rate. The comparison between different repetition rates at the same seed power of 80 W shows the independent scalability of pulse energy and average output power in this regime.
Fig. 5
Fig. 5 Autocorrelation trace measured at 1.3 kW of output power. The pulse duration was measured to be τ = 7.7 ps.
Fig. 6
Fig. 6 a) Spectra of the pulses after the amplifier for the seed without pumping and at 1340 W of average output power; b) beam quality measurement and collimated beam profile at the exit of the amplifier at 1.3 kW of output power.
Fig. 7
Fig. 7 Setup used for SHG. The beam path can be switched by a λ/2-waveplate in a rotary stage and a TFP to either the power head or the SHG setup. The beam size at the LBO crystal is adjusted by a telescope. The output is analysed after a dichroic mirror to separate the two wavelengths.
Fig. 8
Fig. 8 Output power at the wavelength of 515 nm (diamonds) and conversion efficiency (rectangles) versus input power at the fundamental wavelength of 1030 nm measured at the power head next to the TFP. At 1170 W of input power the output power was measured to be 820 W which corresponds to a conversion efficiency of 70%.
Fig. 9
Fig. 9 Beam profile about 16 mm behind the beam waist position for a) 500 W and b) 820 W of green output power. A deterioration in beam quality can be observed.
Fig. 10
Fig. 10 Setup used for THG. The main difference to Fig. 7 is a second temperature-stabilized LBO crystal which was added. Using this crystal a sum-frequency generation (SFG) between the 1030 nm and 515 nm was performed to create UV-light at 343 nm. Additionally, dichroic mirrors to separate the UV wavelength and a beam stabilization device were implemented. Furthermore, the telescope was changed to adapt the beam diameter inside the crystals.
Fig. 11
Fig. 11 a) Output power (diamonds) and conversion efficiency (rectangles) at the wavelength of 343 nm versus the input power at 1030 nm. A maximum output power of 234 W was achieved with 32% conversion efficiency. b) Output power (diamonds) and conversion efficiency (rectangles) at the wavelength of 515 nm with an input beam size of 1.5 mm and without the second LBO crystal.
Fig. 12
Fig. 12 a) Image of the UV beam (observed at a distance of about 1 m from the second LBO crystal behind a HR-mirror steering the beam to the UV power head) at 120 W of output power. No beam degradation was observed. b) Far-field image at 234 W of output power. The beam profile shows strong signs of aberrations.
Fig. 13
Fig. 13 UV output power measurement over 25 minutes. Additionally, the infrared input power was monitored using power head IR 1 behind the TFP. The UV output power follows the input power over time and no power drop due to crystal degradation was observed on this time-scale.

Metrics