Abstract

We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio
Opt. Express 22(25) 31511-31519 (2014)

Monolayer-graphene-based perfect absorption structures in the near infrared

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin
Opt. Express 25(12) 13079-13086 (2017)

Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance

Xiaoyun Jiang, Tao Wang, Shuyuan Xiao, Xicheng Yan, and Le Cheng
Opt. Express 25(22) 27028-27036 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref] [PubMed]
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  3. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref] [PubMed]
  4. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  5. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref] [PubMed]
  6. M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
    [Crossref]
  7. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
    [PubMed]
  8. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” http://arxiv.org/abs/1502.07435 .
  9. F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” http://arxiv.org/abs/1402.2368 .
    [Crossref]
  10. W. W. Salisbury, US Patent No. 2599944 (1952).
  11. J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
    [Crossref]
  12. V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
    [Crossref] [PubMed]
  13. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  14. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
    [Crossref]
  15. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  16. P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
    [Crossref] [PubMed]
  17. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  18. J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  19. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref] [PubMed]
  20. J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
    [Crossref]
  21. M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3553 (2013).
    [Crossref] [PubMed]
  22. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
    [Crossref]
  23. A. Hessel and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275 (1965).
    [Crossref]
  24. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  25. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  26. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
    [PubMed]
  27. E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic, 1998), Vol. 3.
  28. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
    [Crossref]

2015 (2)

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

2014 (6)

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
[PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[PubMed]

2013 (2)

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3553 (2013).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

2012 (4)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

2011 (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

2010 (1)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

2009 (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

2006 (1)

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[Crossref]

1965 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Aközbek, N.

Alaee, R.

Atwater, H. A.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Bagci, H.

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

Bianco, G. V.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Bradley, M. S.

Brar, V. W.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Brongersma, M. L.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Bruno, G.

Bulovic, V.

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

Choi, M.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Cui, Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

D’Orazio, A.

de Ceglia, D.

De Vittorio, M.

Fan, S.

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Farhat, M.

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

Feng, Q.

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Grande, M.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guo, C.

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Heinz, T. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hessel, A.

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hu, C.

Huang, C.

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Huang, J.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Hwang, H. Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Jang, M. S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Jing Li, X.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kang, J. H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Kang, M.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Kik, P. G.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Kim, L. K.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Kim, S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Lederer, F.

Li, J.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, J.-T.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, K.

Liu, N.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Lopez, J. J.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Luo, X.

Ma, X.

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[Crossref]

Maukonen, D.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Milaninia, K. M.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nath, J.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Oliner, A. A.

Peale, R. E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Petruzzelli, V.

Piper, J. R.

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Premaratne, M.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Pu, M.

Qin, S.

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Rockstuhl, C.

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Scalora, M.

Shan, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sherrott, M. C.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Smith, E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stomeo, T.

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Terrones, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Thareja, V.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tischler, J. R.

Vincenti, M. A.

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, C.

Wang, H.-T.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Wang, M.

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[Crossref]

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ye, W.

Yuan, H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Yuan, X.

Zhang, J.

Zhao, Z.

Zhu, W.

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Zhu, Z.

ACS Nano (1)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

J. Appl. Phys. (1)

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Nano Lett. (1)

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

P. Y. Chen, M. Farhat, and H. Bağcı, “Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth,” Nanotechnology 26(16), 164002 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. K. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Science (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Other (5)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” http://arxiv.org/abs/1502.07435 .

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” http://arxiv.org/abs/1402.2368 .
[Crossref]

W. W. Salisbury, US Patent No. 2599944 (1952).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) One-port system with a resonant structure, a spacer and a reflecting mirror. (b) Sketch of the 1D grating: PMMA stripes (red) on Ta2O5 slab (orange) grown on silicon dioxide substrate (cyan). The black thin layer indicates the monolayer graphene.
Fig. 2
Fig. 2 (a) Absorption map versus the tSiO2 thickness for the PEM configuration, in presence of the monolayer graphene, at normal incidence, when the Ta2O5 slab thickness tTa2O5, the periodicity p, the PMMA width wPMMA and the PMMA thickness tPMMA are equal to 100 nm, 470 nm, 305 nm (wPMMA = 0.65p) and 650 nm, respectively. (b) Maximum achievable absorption when the tSiO2 thickness is varied. The maxima and minima wavelengths (in micron) are indicated in red. (c) Reflectance (blue dashed curve), transmittance (green dotted curve) and absorption (red solid curve) spectra when the SiO2 thickness tSiO2 = 0.315 μm.
Fig. 3
Fig. 3 (a) Absorption map versus the tSiO2 thickness and (b) its maximum at normal incidence, when the Ta2O5 slab thickness tTa2O5, the periodicity p, the PMMA width wPMMA and the PMMA thickness tPMMA are equal to 100 nm, 470 nm, 305 nm (wPMMA = 0.65p) and 650 nm, respectively. is set equal to 0.65p. The maxima and minima wavelengths (in micron) are indicated in red. Magnetic field profile (amplitude of the Hz component) when tSiO2 is equal to (c) 0.3 μm at λ = 0.7418 μm and (d) 0.24 μm at λ = 0.7368 μm, respectively. The monolayer graphene is positioned at y = 0.1 μm (white horizontal line) while the gold layer is placed at y < −0.3 μm.
Fig. 4
Fig. 4 (a) Absorption map and (b) maximum achievable absorption versus the PMMA width wPMMA normalized to the periodicity p when tSiO2 = 0.3 μm and the monolayer graphene is taken into account. The Ta2O5 slab thickness tTa2O5, the PMMA width wPMMA and the PMMA thickness tPMMA are equal to 100 nm, 305 nm (wPMMA = 0.65p) and 650 nm, respectively.
Fig. 5
Fig. 5 (a) Angular dependence of the absorption when the incident angle θ is varied in the range 0° - 20° (the Ta2O5 slab thickness tTa2O5, the periodicity p, the PMMA width wPMMA and the PMMA thickness tPMMA are equal to 100 nm, 470 nm, 305 nm (wPMMA = 0.65p) and 650 nm, respectively). (b) Guided resonance mode wavelength dispersion curve versus the angle of incidence for m = 1 (blue solid curve) and m = −1 (red dashed curve), respectively.
Fig. 6
Fig. 6 Raman spectrum of the monolayer graphene after the fabrication process; the asterisks refer to the PMMA stripe spectral features; (inset) Scanning Electron Microscope (SEM) micrograph of the fabricated device where the white scalebar refers to 470 nm.
Fig. 7
Fig. 7 (a) Normal incidence (blue curve) non-averaged reflectance and (thick red solid curve) averaged spectra of the composed device. (b) Angular response in the numerical aperture range with no averaging. (c) Modulation of the light in the numerical aperture cone (Gaussian with sigma = 3.4°). (d) Averaged and modulated angular response in the numerical aperture range.
Fig. 8
Fig. 8 Experimental (a) reflectance and (b) absorption spectra of the fabricated device (blue solid curves). For comparison, the red dashed curves refer to the numerical response.
Fig. 9
Fig. 9 Simulated (a) reflectance and (b) absorption spectra for the dielectric mirror (solid lines) and for the gold mirror (dashed lines), respectively. Measured (c) reflectance and (d) absorption spectra when the dose is equal to 250 μC/cm2 (red curve), 300 μC/cm2 (blue curve) and 350 μC/cm2 (green curve) for the dielectric mirror (solid lines) and for the gold mirror (dashed lines), respectively.

Metrics