Abstract

By using time-of-flight information encoded in multiply scattered light, it is possible to reconstruct images of objects hidden from the camera’s direct line of sight. Here, we present a non-line-of-sight imaging system that uses a single-pixel, single-photon avalanche diode (SPAD) to collect time-of-flight information. Compared to earlier systems, this modification provides significant improvements in terms of power requirements, form factor, cost, and reconstruction time, while maintaining a comparable time resolution. The potential for further size and cost reduction of this technology make this system a good base for developing a practical system that can be used in real world applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gated STED microscopy with time-gated single-photon avalanche diode

Iván Coto Hernández, Mauro Buttafava, Gianluca Boso, Alberto Diaspro, Alberto Tosi, and Giuseppe Vicidomini
Biomed. Opt. Express 6(6) 2258-2267 (2015)

Non-line-of-sight tracking of people at long range

Susan Chan, Ryan E. Warburton, Genevieve Gariepy, Jonathan Leach, and Daniele Faccio
Opt. Express 25(9) 10109-10117 (2017)

Fast back-projection for non-line of sight reconstruction

Victor Arellano, Diego Gutierrez, and Adrian Jarabo
Opt. Express 25(10) 11574-11583 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Ralston, G. Charvat, and J. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 551–558.
  2. B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.
  3. A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
    [Crossref]
  4. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
    [Crossref]
  5. E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Ghler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48, 5956–5969 (2009).
    [Crossref] [PubMed]
  6. J. C. Hebden, R. A. Kruger, and K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [Crossref] [PubMed]
  7. S. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of Conference on Computer Vision and Pattern Recognition Workshop (IEEE, 2004), pp. 35.
  8. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121–123 (1978).
    [Crossref] [PubMed]
  9. A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
    [Crossref]
  10. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
    [Crossref]
  11. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
    [Crossref]
  12. M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).
  13. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.
  14. G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
    [Crossref]
  15. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
    [Crossref]
  16. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
    [Crossref] [PubMed]
  17. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
    [Crossref] [PubMed]
  18. M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53, 023102 (2014).
    [Crossref]
  19. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
    [Crossref]
  20. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Tracking hidden objects with a single-photon camera,” http://arxiv.org/abs/1503.01699 .
  21. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
    [Crossref]
  22. M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
    [Crossref] [PubMed]
  23. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
    [Crossref] [PubMed]
  24. A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
    [Crossref]
  25. A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
    [Crossref]
  26. B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
    [Crossref]
  27. Y. Barkana and M. Belkin, “Laser Eye Injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
    [Crossref] [PubMed]
  28. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
    [Crossref]

2015 (2)

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

2014 (4)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53, 023102 (2014).
[Crossref]

2013 (4)

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

2012 (2)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

2011 (2)

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

2009 (2)

2007 (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

2005 (1)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

2004 (1)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

2003 (1)

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

2000 (1)

Y. Barkana and M. Belkin, “Laser Eye Injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
[Crossref] [PubMed]

1991 (1)

1978 (1)

Abramson, N.

Anstett, G.

Bamji, C.

S. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of Conference on Computer Vision and Pattern Recognition Workshop (IEEE, 2004), pp. 35.

Barkana, Y.

Y. Barkana and M. Belkin, “Laser Eye Injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
[Crossref] [PubMed]

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Barsi, C.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Bawendi, M.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

Belkin, M.

Y. Barkana and M. Belkin, “Laser Eye Injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
[Crossref] [PubMed]

Besse, P.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Bhandari, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Boso, G.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Brockherde, W.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Bronzi, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Buller, G. S.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Buttafava, M.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Chakraborty, B.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Charvat, G.

T. Ralston, G. Charvat, and J. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 551–558.

Chen, B.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Ciccarella, P.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

Couch, G. S.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Cova, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Davis, J.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

Dorrington, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Durini, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Elmqvist, M.

Faccio, D.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Ferrin, T. E.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Garg, G.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Gariepy, G.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Ghler, B.

Goddard, T. D.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Gokturk, S.

S. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of Conference on Computer Vision and Pattern Recognition Workshop (IEEE, 2004), pp. 35.

Gosch, M.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Greenblatt, D. M.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Gregson, J.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

Gustafsson, M.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Gutierrez, D.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Hebden, J. C.

Heide, F.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.

Heidrich, W.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.

Henderson, R.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Herberthson, M.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Heshmat, B.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Horowitz, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Huang, C. C.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Hullin, M. B.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.

Hutchison, T.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

Janis, A.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Jarabo, A.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Joshi, C.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Kadambi, A.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Kirmani, A.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

Krstaji, N.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Kruger, R. A.

Kutulakos, K. N.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

Lasser, T.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Laurenzis, M.

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53, 023102 (2014).
[Crossref]

Lawson, E.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Leach, J.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Lensch, H. P. A.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Levoy, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Li, C.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Li, Y.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Lutzmann, P.

Markovic, B.

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

Marschner, S. R.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Masia, B.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Meng, E. C.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Mora, A. D.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Morrell, D.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Nilsson, S.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

O’Toole, M.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

Orbom, A.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Papandreou-Suppappola, A.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Peabody, J.

T. Ralston, G. Charvat, and J. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 551–558.

Pettersen, E. F.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

Popovic, R.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Rahm, J.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Ralston, T.

T. Ralston, G. Charvat, and J. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 551–558.

Raskar, R.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

Repasi, E.

Rigler, R.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Rochas, A.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Ruggeri, A.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Sen, P.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

Serov, A.

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

Steinvall, O.

Streeter, L.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Sume, A.

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Thew, R.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Thomson, R. R.

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Tisa, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Tosi, A.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Trueblood, T.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Veeraraghavan, A.

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

Velten, A.

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53, 023102 (2014).
[Crossref]

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

Villa, F.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

Weyers, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Whyte, R.

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

Wong, K. S.

Wu, D.

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

Xiao, L.

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.

Yalcin, H.

S. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of Conference on Computer Vision and Pattern Recognition Workshop (IEEE, 2004), pp. 35.

Zappa, F.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Zbinden, H.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Zhang, J.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

ACM Trans. Graph. (5)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual Photography,” ACM Trans. Graph. 24, 745–755 (2005).
[Crossref]

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing and Visualizing the Propagation of Light,” ACM Trans. Graph. 32, 44 (2013).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles,” ACM Trans. Graph. 32, 167 (2013).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget Transient Imaging Using Photonic Mixer Devices,” ACM Trans. Graph. 32, 45 (2013).
[Crossref]

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal Frequency Probing for 5d Transient Analysis of Global Light Transport,” ACM Trans. Graph. 33, 87 (2014).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51, 4500107 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photon. Technol. Lett. 15, 963–965 (2003).
[Crossref]

IEEE Trans. Circuits and Syst. (1)

B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits and Syst. 60, 557–569 (2013).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. Sume, M. Gustafsson, M. Herberthson, A. Janis, S. Nilsson, J. Rahm, and A. Orbom, “Radar Detection of Moving Targets Behind Corners,” IEEE Trans. Geosci. Remote Sens. 49, 2259–2267 (2011).
[Crossref]

Int. J. Comput. Vision (1)

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking Around the Corner using Ultrafast Transient Imaging,” Int. J. Comput. Vision 95, 13–28 (2011).
[Crossref]

J. Comput. Chem. (1)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF ChimeraA visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612 (2004).
[Crossref] [PubMed]

J. Mod. Optic. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 m diameter and 55% detection efficiency at 420 nm,” J. Mod. Optic. 61, 102–115 (2014).
[Crossref]

Nat. Commun. (2)

G. Gariepy, N. Krstaji, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53, 023102 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85, 083114 (2014).
[Crossref] [PubMed]

Sensors Actuat. A: Phys. (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Surv. Ophthalmol. (1)

Y. Barkana and M. Belkin, “Laser Eye Injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
[Crossref] [PubMed]

Other (5)

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Tracking hidden objects with a single-photon camera,” http://arxiv.org/abs/1503.01699 .

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3d Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3222–3229.

T. Ralston, G. Charvat, and J. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in Proceedings of IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2010), pp. 551–558.

B. Chakraborty, Y. Li, J. Zhang, T. Trueblood, A. Papandreou-Suppappola, and D. Morrell, “Multipath exploitation with adaptive waveform design for tracking in urban terrain,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2010), pp. 3894–3897.

S. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of Conference on Computer Vision and Pattern Recognition Workshop (IEEE, 2004), pp. 35.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) shows the light path through our system. The laser pulse is directed towards the wall by a set of galvanometer mirrors at point S. The light strikes the wall at point s via r1. Some of the light is reflected back to the detector (first bounce light) and the rest is scattered throughout the scene. A small amount of light goes towards the object via r2, is reflected back to the wall via r3, strikes the wall at point d, and is detected at D. The camera takes pictures of the laser spots on the wall. Data is collected for different positions s on the wall, following the laser scanning pattern shown in (b).
Fig. 2
Fig. 2 (a) An example of the histogram produced by the TCSPC module for two different laser positions, as indicated by the red and blue dots highlighted in (b). The cross in the center of (b) indicates where the SPAD is focused on the wall.
Fig. 3
Fig. 3 (a) Photograph of the scene. (b) Objects in the scene to be reconstructed.
Fig. 4
Fig. 4 The image of the grid used for web camera calibration. The dots are 5 cm apart and origin of the 3D coordinates system is marked by the black cross in the lower right corner.
Fig. 5
Fig. 5 Spacing between time bins is 1 ps. (a) Comparison of the measured time-of-flight in time bins(blue .) with the time-of-flight calculated from the 3D coordinates(magenta *). (b) The differences between the the measured and calculated first bounce time-of-flight.
Fig. 6
Fig. 6 An example of the confidence map taken from one slice in the reconstruction volume. (a) shows the raw backprojection of a slice near the bottom of the reconstruction volume containing the return from the camera filter, as well as sections of the letter T and the large patch to the right. (b) is a slice in the center of the volume containing only the letter T and the camera. Finally (c) is near the top of the volume with a larger section of the T on the right and the small patch to the left. The second row (d,e,f) shows the same slices after application of the Laplacian filter and the bottom row (g,h,i) shows the slices after application of the thresholding algorithm.
Fig. 7
Fig. 7 (a) Reconstruction rendered using a similar perspective as the scene photograph. (b) Reconstruction as viewed from the wall. In both (a) and (b) the box shows the reconstruction volume with dimensions of 200×90×40 cm.
Fig. 8
Fig. 8 (a) Reconstruction of the letter T with a 1 s exposure time. (b) Reconstruction of the letter T with a 10 s exposure time. Both (a) and (b) have a reconstruction volume of 150×90×70 cm, shown by the white box.
Fig. 9
Fig. 9 Reconstruction of the letter T with the room lights turned on. The size of the reconstruction volume is 150×90×70 cm, shown by the white box.
Fig. 10
Fig. 10 (a) The cardboard target. (b) The reconstruction of the cardboard target with a 10 s exposure. (c) The black target. (d) The reconstruction of the black target. For both (b) and (d), the reconstruction volume is 80×90×70 cm, shown by the white box.
Fig. 11
Fig. 11 Resolution in the reconstruction is determined by how well the intersection of ellipsoids can be determined. This depends on the time resolution, i.e. the width of the ellipsoids, but also the difference in their focal points.
Fig. 12
Fig. 12 Reconstruction of the multiple objects scene with only half of the laser positions used to generate the reconstruction as (a) viewed from the same perspective as the photograph in Fig. 7 and (b) from the wall. (c) The laser pattern with half of the points removed used to reconstruct images (a) and (b).
Fig. 13
Fig. 13 The confidence map resulting from the backprojection of a point located 0.5 m away from the wall using different numbers of laser positions. (a) was created using the 3×3 pattern shown in (d). (b) used the 6×6 pattern shown in (e), and (c) used the 11×11 pattern shown in (f). In (d,e,f), the location of the target is shown by the o, the detector location is represented by the x, and the laser origin is shown by the *

Tables (1)

Tables Icon

Table 1 Detected light level in different room lighting conditions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Θ = 1.22 c τ a

Metrics