Abstract

Patterning micro- and nano-scale optical elements on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes. A low-cost, high-precision fabrication process is thus highly desired and can have significant impact on manufacturing that leads to wider applications. In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on non-planar substrates. In this process, a flexible elastomer stamp, i.e., PDMS, was used as a mold to perform hot-embossing on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows non-clean room operation as well as precise control of all process parameters, e.g., pressure, temperature and time. Surface profiles and optical properties of the fabricated components, including micro-lens array and optical gratings, were characterized quantitatively, e.g., RMS ~λ/30 for a micro-lens, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible, fast, and low-cost production process for polymer based diffractive optics

Maik Rahlves, Maher Rezem, Kristian Boroz, Sebastian Schlangen, Eduard Reithmeier, and Bernhard Roth
Opt. Express 23(3) 3614-3622 (2015)

Sub-micrometer soft lithography of a bulk chalcogenide glass

Tomas Kohoutek, Jiri Orava, A. Lindsay Greer, and Hiroshi Fudouzi
Opt. Express 21(8) 9584-9591 (2013)

Sol-gel zirconia diffraction grating using a soft imprinting process

Itsunari Yamada and Yusuke Ikeda
Appl. Opt. 56(17) 5054-5059 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [Crossref]
  2. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
    [Crossref] [PubMed]
  3. H. Jung and K. H. Jeong, “Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems,” Opt. Express 17(17), 14761–14766 (2009).
    [Crossref] [PubMed]
  4. P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  5. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [Crossref] [PubMed]
  6. P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
    [Crossref] [PubMed]
  7. J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
    [Crossref]
  8. Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
    [Crossref] [PubMed]
  9. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  10. T. Namioka and M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt. 34(13), 2180–2186 (1995).
    [Crossref] [PubMed]
  11. Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
    [Crossref]
  12. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
    [Crossref]
  13. H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
    [Crossref]
  14. H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
    [Crossref]
  15. D. Daly, Microlens Arrays (Taylor and Francis, 2001).

2013 (1)

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

2012 (2)

2009 (1)

2008 (1)

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

2007 (1)

2006 (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

2003 (1)

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

2001 (1)

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

2000 (1)

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

1997 (1)

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1995 (2)

S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

T. Namioka and M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt. 34(13), 2180–2186 (1995).
[Crossref] [PubMed]

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Chen, F.

Choi, H. J.

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Choi, J. H.

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Chou, S. Y.

S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Deen, M. J.

der Maur, M. A.

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

Duparré, J.

Eisner, M.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Fang, Q.

Gobrecht, J.

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

Haselbeck, S.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Heyderman, L. J.

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

Hou, X.

Jeong, K. H.

Jung, H.

Kim, G. T.

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Koike, M.

Lee, H.

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Li, L.

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Li, Z.

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Liu, H.

Lu, J.

Michel, B.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Namioka, T.

Nussbaum, P.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Peter, R. K.

S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Preston, J. R.

S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Qu, P.

Radtke, D.

Schift, H.

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

Schmid, H.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Selvaganapathy, P. R.

Shin, J. H.

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Si, J.

Tünnermann, A.

Voelkel, R.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Wang, Y.

Yang, H.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Yang, Q.

Zeitner, U. D.

Zeng, L.

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Zhou, Q.

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

J. H. Shin, H. J. Choi, G. T. Kim, J. H. Choi, and H. Lee, “Fabrication of nanosized antireflection patterns on surface of aspheric lens substrate by nanoimprint lithography,” Appl. Phys. Express 6(5), 055001 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. Y. Chou, R. K. Peter, and J. R. Preston, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

J. Micromech. Microeng. (1)

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Macromolecules (1)

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Nanotechnology (1)

H. Schift, L. J. Heyderman, M. A. der Maur, and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films,” Nanotechnology 12(2), 173–177 (2001).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Pure Appl. Opt. (1)

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Science (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Other (2)

M. C. Hutley, Diffraction Gratings (Academic, 1982).

D. Daly, Microlens Arrays (Taylor and Francis, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Fabrication process of micro-lens array master as well as the PDMS soft mold of negative micro-lens patterns; (b) Cross-section view of a double-layer PDMS mold and an example double layer mold that replicates a grating pattern from a quartz ruled blazed grating master.
Fig. 2
Fig. 2 Schematic and photograph of the vacuum-assisted soft hot embossing apparatus. The vacuum imprinter consists of two chambers, a soft membrane, an IR lamp and a pneumatic system.
Fig. 3
Fig. 3 (a) Schematic procedures for the soft mold-based hot embossing process: Deforming the soft stamp and patterning micro- or nano-structures on curved substrates (convex or concave surfaces). (b) Temperature control in the hot embossing process and the pressure readings from chamber A and B; imprint force data collected by load cell versus time; middle images show a deformed membrane during the imprint process.
Fig. 4
Fig. 4 (a) Optical images of the micro-lens array imprinted on a convex PMMA substrate; (b) cross-sectional profile of the micro-lens array and a selected individual micro-lens; (c) 3-D surface profile of the selected micro-lens obtained from a Michelson interferometer.
Fig. 5
Fig. 5 Study of processing conditions for the soft mold hot embossing process
Fig. 6
Fig. 6 (a) Optical image and AFM characterization results of the blazed grating master (left) and the hot-embossed concave grating (right); (b) diffraction test of the hot-embossed blazed grating coated with aluminum
Fig. 7
Fig. 7 Optical image and AFM characterization results of the blazed grating master (left) and the hot-embossed concave holographic grating (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= D 2 +4 h 2 8h , f= R n1 , NA= D 2f , Δϕ D f

Metrics