Abstract

A novel tip-reflective and power-referenced refractometer based on strong fiber-to-fiber optical coupling for a large range of surrounding refractive index (SRI) (from 1.33 to 1.45) is proposed and experimentally demonstrated. A short D-shaped fiber stub is placed in parallel and close contact to another standard circular fiber containing a weakly tilted Bragg grating (TFBG). The TFBG couples the light from the circular fiber’s core into its cladding where it remains guided. Apart from the direct light coupling over the contact interface, the evanescent field from the guided cladding modes penetrates the surroundings and reaches the D-fiber core by tunneling across the medium into which the fiber pair is located. The amount of tunneling depends strongly on the SRI so that the total amount of light collected by the D-fiber provides a measure of the SRI. Sensitivities ranging from ∼1000 to 13000 nW/RIU (Refractive Index Unit) have been obtained and the result is independent of temperature (within +/−10 nW of uncertainty). The measurement can be temperature-referenced through measurement of the TFBG spectrum if needed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling

Tuan Guo, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert
Opt. Express 17(7) 5736-5742 (2009)

Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection

Yue Ma, Xueguang Qiao, Tuan Guo, Ruohui Wang, Jing Zhang, Yinyan Weng, Qiangzhou Rong, Manli Hu, and Zhongyao Feng
Opt. Lett. 37(3) 323-325 (2012)

Mode transition in high refractive index coated long period gratings

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano
Opt. Express 14(1) 19-34 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  2. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [Crossref] [PubMed]
  3. B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).
  4. A. P. Zhang, X. M. Tao, W. H. Chung, B. O. Guan, and H. Y. Tam, “Cladding-mode-assisted recouplings in concatenated long-period and fiber Bragg gratings,” Opt. Lett. 27(14), 1214–1216 (2002).
    [Crossref] [PubMed]
  5. T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
    [Crossref]
  6. L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
    [Crossref]
  7. M. D. Baiad, M. Gagné, S. Lemire-Renaud, E. De Montigny, W. J. Madore, N. Godbout, C. Boudoux, and R. Kashyap, “Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler,” Opt. Express 21(6), 6873–6879 (2013).
    [Crossref] [PubMed]
  8. P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
    [Crossref]
  9. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Conference on Optical Fiber Communication (OSA, 2000), paper FB5.
    [Crossref]
  10. M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, and B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express 15(17), 10855–10862 (2007).
    [Crossref] [PubMed]
  11. Y. Liu, Q. Liu, and K. S. Chiang, “Optical coupling between a long-period fiber grating and a parallel tilted fiber Bragg grating,” Opt. Lett. 34(11), 1726–1728 (2009).
    [Crossref] [PubMed]
  12. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22(5), 1358–1366 (2004).
    [Crossref]
  13. Q. Wu, Y. Semenova, Y. Q. Ma, P. F. Wang, T. Guo, L. Jin, and G. Farrell, “Light coupling between a singlemode-multimode-singlemode (SMS) fiber structure and a long period fiber grating,” J. Lightwave Technol. 29(24), 3683–3688 (2011).
    [Crossref]
  14. Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Opt. Express 20(3), 3098–3109 (2012).
    [Crossref] [PubMed]
  15. M. H. Chiu, S. N. Hsu, and H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuat B Chem. 101(3), 322–327 (2004).
  16. M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).
  17. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
    [Crossref] [PubMed]
  18. R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005).
    [Crossref]
  19. Y. Li, S. Wielandy, G. E. Carver, P. I. Reyes, and P. S. Westbrook, “Scattering from nonuniform tilted fiber gratings,” Opt. Lett. 29(12), 1330–1332 (2004).
    [Crossref] [PubMed]
  20. T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
    [Crossref]

2013 (2)

2012 (1)

2011 (2)

Q. Wu, Y. Semenova, Y. Q. Ma, P. F. Wang, T. Guo, L. Jin, and G. Farrell, “Light coupling between a singlemode-multimode-singlemode (SMS) fiber structure and a long period fiber grating,” J. Lightwave Technol. 29(24), 3683–3688 (2011).
[Crossref]

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

2010 (3)

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

2007 (2)

M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).

M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, and B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express 15(17), 10855–10862 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (3)

2002 (1)

2000 (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[Crossref]

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[Crossref] [PubMed]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Baiad, M. D.

Bock, W. J.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Boudoux, C.

Carver, G. E.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chan, C. C.

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

Chan, F. Y. M.

Chen, C.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Chi, M. H.

M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).

Chiang, K. S.

Chiu, M. H.

M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).

M. H. Chiu, S. N. Hsu, and H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuat B Chem. 101(3), 322–327 (2004).

Chung, W. H.

De Montigny, E.

Dong, X.

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

Farrell, G.

Gagné, M.

Godbout, N.

Grobnic, D.

Gu, B.

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

Guan, B. O.

Guo, T.

Han, W. T.

He, S.

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

Hsu, S. N.

M. H. Chiu, S. N. Hsu, and H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuat B Chem. 101(3), 322–327 (2004).

Jin, L.

Jin, S.

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

Jung, Y. M.

Kashyap, R.

Kim, B. H.

Kim, M. J.

Krug, P. A.

Lam, P. K.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[Crossref]

Laronche, A.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Lee, B. H.

Lemire-Renaud, S.

Li, T.

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

Li, Y.

Liu, Q.

Liu, Y.

Love, J. D.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[Crossref]

Lu, P.

Ma, Y.

Ma, Y. Q.

Madore, W. J.

Mihailov, S. J.

Mikulic, P.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Ng, M. N.

Reyes, P. I.

Semenova, Y.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Shih, C. H.

M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).

Smietana, M.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Stevenson, A. J.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[Crossref]

Tam, H. Y.

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Tao, X. M.

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Walker, R. B.

Wang, P.

Wang, P. F.

Westbrook, P. S.

Wielandy, S.

Wu, Q.

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Yang, H.

M. H. Chiu, S. N. Hsu, and H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuat B Chem. 101(3), 322–327 (2004).

Yu, C.

Yuan, J.

Zhang, A. P.

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

A. P. Zhang, X. M. Tao, W. H. Chung, B. O. Guan, and H. Y. Tam, “Cladding-mode-assisted recouplings in concatenated long-period and fiber Bragg gratings,” Opt. Lett. 27(14), 1214–1216 (2002).
[Crossref] [PubMed]

Zhao, C.

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

Zhou, B.

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

Electron. Lett. (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36(11), 967–969 (2000).
[Crossref]

IEEE Photonics J. (1)

B. Zhou, A. P. Zhang, S. He, and B. Gu, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photonics J. 2(2), 151–157 (2010).

IEEE Photonics Technol. Lett. (2)

T. Li, X. Dong, C. C. Chan, C. Zhao, and S. Jin, “Power-referenced optical fiber refractometer based on a hybrid fiber grating,” IEEE Photonics Technol. Lett. 23(22), 1706–1708 (2011).
[Crossref]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photonics Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Opt. Commun. (1)

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Sens. Actuat B Chem. (1)

M. H. Chiu, S. N. Hsu, and H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuat B Chem. 101(3), 322–327 (2004).

Sens. Actuat. B. Chem. (1)

M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuat. B. Chem. 123(2), 1120–1124 (2007).

Sensors (Basel) (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Other (1)

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Conference on Optical Fiber Communication (OSA, 2000), paper FB5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental schematic of sensing system (a); fiber-to-fiber recoupling between a TFBG and a D-shaped fiber in parallel contact (b); microscope images of sensor probe and cross section of D-shaped fiber (c).
Fig. 2
Fig. 2 Transmission of TFBG (blue curve) and reflections from D-shaped fiber with maximum (red curve) and minimum (green curve) re-coupled spectra. Insets show the fixed D-shaped fiber with two orthogonally positioned TFBGs (red arrows indicate the azimuthal orientation of the cladding mode maxima).
Fig. 3
Fig. 3 SRI information detection by monitoring the fiber-to-fiber re-coupled cladding mode reflection (a); Temperature information detection by monitoring the in-fiber core reflection and showing that the SRI signal (recoupled power) is independent of temperature (b).

Metrics