Abstract

We describe our ellipsometric pump-probe experiment to study materials at extreme conditions. To demonstrate the performance, liquid bismuth surface is pumped by intense 25 fs pulse and subsequent evolution of non-equilibrium bismuth plasma is probed by chirped continuum pulse. The shift in the origin-time at continuum spectral component is precisely corrected by comparing chirp behavior estimated from induced phase modulation (IPM) in fused silica to one from liquid bismuth reflectivity measurement. From IPM measurements, it was found that the time resolution of a chirped pulse depends on group delay dispersion at corresponding continuum spectral components. Moreover, due to explicit relation between time and frequency of a chirped probe pulse, pump induced rapid changes are projected onto different probe wavelengths. Using these properties, we investigated polarization dependent reflection dynamics of non-equilibrium bismuth plasma with sub-100 fs temporal resolution and a broader wavelength response. These ultrafast measurements will be useful to study exotic phase transitions at extreme states of matter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation

Stephan Rapp, Michael Kaiser, Michael Schmidt, and Heinz P. Huber
Opt. Express 24(16) 17572-17592 (2016)

Direct detection of ultrafast thermal transients by use of a chirped, supercontinuum white-light pulse

C. J. K. Richardson, J. B. Spicer, R. D. Huber, and H. W. H. Lee
Opt. Lett. 26(14) 1105-1107 (2001)

Ultrafast pump-probe surface plasmon resonance spectroscopy of thin gold films

A. Devizis, V. Vaicikauskas, and V. Gulbinas
Appl. Opt. 45(11) 2535-2539 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Lee, S. J. Moon, H.-K. Chung, W. Rozmus, H. A. Baldis, G. Gregori, R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis, D. Riley, J.-C. Gauthier, and P. Audebert, “Finite temperature dense matter studies on next-generation light sources,” J. Opt. Soc. Am. B 20, 770–778 (2003).
    [Crossref]
  2. R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
    [Crossref]
  3. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
    [Crossref] [PubMed]
  4. A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
    [Crossref]
  5. M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
    [Crossref] [PubMed]
  6. H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
    [Crossref]
  7. M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
    [Crossref] [PubMed]
  8. M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
    [Crossref] [PubMed]
  9. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Generation of 8.5-fs pulses at 1.3 μ m for ultrabroadband pump-probe spectroscopy,” Opt. Express 17, 12510–12515 (2009).
    [Crossref] [PubMed]
  10. M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
    [Crossref]
  11. T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
    [Crossref] [PubMed]
  12. Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
    [Crossref] [PubMed]
  13. P. K. Singh, G. Chatterjee, A. Adak, A. D. Lad, P. Brijesh, and G. R. Kumar, “Ultrafast optics of solid density plasma using multicolor probes,” Opt. Express 22, 22320–22327 (2014).
    [Crossref] [PubMed]
  14. C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
    [Crossref]
  15. H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
    [Crossref] [PubMed]
  16. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
    [Crossref]
  17. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref] [PubMed]
  18. C. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, “Generation of intense few-cycle laser pulses through filamentation - parameter dependence,” Opt. Express 13, 7541–7547 (2005).
    [Crossref] [PubMed]
  19. E. Tokunaga, A. Terasakiy, and T. Kobayashi, “Femtosecond continuum interferometer for transient phase and transmission spectroscopy,” J. Opt. Soc. Am. B 13, 496–513 (1996).
    [Crossref]
  20. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
    [Crossref]
  21. E. Collett, “Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses,” Surf. Sci. 96, 156–167 (1980).
    [Crossref]
  22. D. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (Taylor & Francis, 2004).

2014 (1)

2009 (1)

2008 (1)

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

2007 (1)

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

2006 (2)

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

2003 (3)

R. W. Lee, S. J. Moon, H.-K. Chung, W. Rozmus, H. A. Baldis, G. Gregori, R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis, D. Riley, J.-C. Gauthier, and P. Audebert, “Finite temperature dense matter studies on next-generation light sources,” J. Opt. Soc. Am. B 20, 770–778 (2003).
[Crossref]

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

2001 (2)

J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
[Crossref]

M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
[Crossref] [PubMed]

1999 (2)

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

1996 (1)

1995 (2)

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
[Crossref]

1988 (1)

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

1980 (1)

E. Collett, “Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses,” Surf. Sci. 96, 156–167 (1980).
[Crossref]

Adak, A.

Ao, T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Audebert, P.

Baldis, H. A.

Bastea, M.

M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
[Crossref] [PubMed]

Biegert, J.

Bonora, S.

Brida, D.

Brijesh, P.

Callan, J. P.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Cauble, R. C.

Celliers, P.

A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
[Crossref]

Cerchez, M.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Cerullo, G.

Chatterjee, G.

Chung, H.-K.

Collett, E.

E. Collett, “Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses,” Surf. Sci. 96, 156–167 (1980).
[Crossref]

Collins, G.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

Downer, M. C.

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

Eckle, P.

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

Falcone, R.

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

Forsman, A.

A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
[Crossref]

Gauthier, J.-C.

Geindre, J.-P.

Glezer, E. N.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Gregori, G.

Grimes, M. K.

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

Guandalini, A.

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Hanson, D.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Hauri, C.

Huang, L.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Inui, M.

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

Ishikawa, D.

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

Jung, R.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Keller, U.

Kim, A. M.-T.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Kobayashi, T.

Kornelis, W.

Koslow, I.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

Kumar, G. R.

Lad, A. D.

Landen, O. L.

Lee, E.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Lee, R. W.

Lee, Y.-S.

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

Lewis, C. L.

Lide, D.

D. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (Taylor & Francis, 2004).

Manzoni, C.

Marangoni, M.

Matsuda, K.

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

Mazur, E.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Mitchell, A. C.

M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
[Crossref] [PubMed]

Moon, S. J.

More, R. M.

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

Morikami, H.

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

Mulser, P.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Murnane, M.

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

Nellis, W. J.

M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
[Crossref] [PubMed]

Ng, A.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

R. W. Lee, S. J. Moon, H.-K. Chung, W. Rozmus, H. A. Baldis, G. Gregori, R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis, D. Riley, J.-C. Gauthier, and P. Audebert, “Finite temperature dense matter studies on next-generation light sources,” J. Opt. Soc. Am. B 20, 770–778 (2003).
[Crossref]

A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
[Crossref]

Ogitsu, T.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Ohishi, Y.

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

Osterholz, J.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Ping, Y.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Prendergast, D.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Price, D. F.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Rebibo, S.

Riley, D.

Roeser, C. A. D.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Rose, S. J.

Rozmus, W.

Ruhl, H.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Rundquist, A. R.

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

Ruthmann, J.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

Schwegler, E.

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Siegal, Y.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Silvestri, S. D.

Singh, P. K.

Springer, P. T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Tam, H.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Tamura, K.

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

Terasakiy, A.

Tokunaga, E.

Toncian, T.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Ueda, K.-i.

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

Villoresi, P.

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Wark, J. S.

Warren, K. H.

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

White, W. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

Widmann, K.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Willi, O.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Yoneda, H.

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

Zinamon, Z.

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Colloques (1)

R. M. More, Z. Zinamon, K. H. Warren, R. Falcone, and M. Murnane, “Heating of solids with ultra-short laser pulses,” J. Phys. Colloques 49, 43–51 (1988).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[Crossref]

Phys. Rev. E (2)

H. Morikami, H. Yoneda, K.-i. Ueda, and R. M. More, “Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments,” Phys. Rev. E 70, 035401 (2004).
[Crossref]

A. Ng, A. Forsman, and P. Celliers, “Heat front propagation in femtosecond-laser-heated solids,” Phys. Rev. E 51, R5208–R5211 (1995).
[Crossref]

Phys. Rev. Lett. (9)

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1˘1000 ev,” Phys. Rev. Lett. 75, 252–255 (1995).
[Crossref] [PubMed]

M. K. Grimes, A. R. Rundquist, Y.-S. Lee, and M. C. Downer, “Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces,” Phys. Rev. Lett. 82, 4010–4013 (1999).
[Crossref]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, “Broadband dielectric function of nonequilibrium warm dense gold,” Phys. Rev. Lett. 96, 255003 (2006).
[Crossref] [PubMed]

M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, and Y. Ohishi, “Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg,” Phys. Rev. Lett. 98, 185504 (2007).
[Crossref] [PubMed]

M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3111 (2001).
[Crossref] [PubMed]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref] [PubMed]

H. Yoneda, H. Morikami, K.-i. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74, 3413 (2003).
[Crossref]

Surf. Sci. (1)

E. Collett, “Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses,” Surf. Sci. 96, 156–167 (1980).
[Crossref]

Other (1)

D. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (Taylor & Francis, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of ellipsometric pump-continuum probe system. ND-1, ND-2: Variable ND-filters; HWP, QWP: λ/2 & λ/4 Waveplates; WP-1, WP-2: Wollaston Polarizers; BBS: Al-Coated Beam Splitter (400–700 nm).
Fig. 2
Fig. 2 (a) Experimental setup for induced phase modulation experiment. (b) Changes in the optical density, ΔOD, from the transmission measurement with chirped continuum probe pulse (dynamics at different wavelengths are off-set for clarity). (c) Chirp behavior of the continuum. (d) Dynamics after chirp correction.
Fig. 3
Fig. 3 Time-resolution with chirped continuum probing. Temporal width of the central peak at different probe wavelength (dashed line); and time-resolution calculated from the measured GDD using Eq. (6) (solid line).
Fig. 4
Fig. 4 Time resolved dynamics of bismuth plasma at an incident pump intensity of 2×1013 W/cm2 and continuum probe beam chirped to 8.65 ps. (a) shows the reflected spectra I1(∝ |rp|2), recorded at different time delays between the pump and probe (spectra, 1 – 8, are shown in false color to identify the continuum spectral components). (b) shows the normalized intensity line outs across the central plasma region of the spectra shown in (a). (c) is the normalized dynamics of ratio X without chirp correction. The surface expansion time is indicated by dashed black line in (c).
Fig. 5
Fig. 5 Chirp corrected time-resolved dynamics of reflectivity ratio X for the continuum probe chirped to 2.8 ps (a) and 8.65 ps (b). Incident pump intensity was 1.8×1013 and 2×1013 W/cm2 respectively. Dynamics at different wavelengths are shifted vertically for clarity. Early time pausing behavior is indicated by dashed black lines and the surface expansion time at corresponding wavelength is shown by dashed red lines in both figures respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( ω ) = E 0 exp ( ( α ( ω ω 0 ) 2 + i β ( ω ω 0 ) 2 )
E ( t ) = E 0 μ + i ψ 2 exp ( μ t 2 i ω 0 t i ψ t 2 )
Δ E ( ω 0 , τ ) E ( ω 0 ) = δ t p T exp ( 2 l n ( 2 ) τ 2 T 2 )
T = t p 1 + ( μ i ψ ) ( t r e s t p ) 2
t r e s 2 = 8 l n ( 2 ) α 2 + β 2 ,
t r e s = 4 l n ( 2 ) ϕ ( ω 0 )

Metrics