Abstract

We explore the feasibility of a controllable and easy-to-implement moiré-based composite circular-line gratings imaging scheme for optical alignment in proximity lithography. One circular grating and four line gratings located on both the mask alignment mark and wafer alignment mark are used to realize the coarse alignment and fine alignment respectively. The fundamental derivation of coarse alignment employing circular gratings and fine alignment employing line gratings are given. Any displacement of misalignment that occurs at the surface of two overlapped gratings can be sensed and determined through subsequent fringe phase analysis without the influence of the gap between the mask and the wafer or wafer process. The design and manufacture process of the alignment marks are presented. The experimental results validate and demonstrate the feasibility of the proposed approach.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Four-quadrant gratings moiré fringe alignment measurement in proximity lithography

Jiangping Zhu, Song Hu, Junsheng. Yu, Shaolin Zhou, Yan Tang, Min Zhong, Lixin Zhao, Minyong Chen, Lanlan Li, Yu He, and Wei Jiang
Opt. Express 21(3) 3463-3473 (2013)

Moiré interferometry with high alignment resolution in proximity lithographic process

Shaolin Zhou, Song Hu, Yongqi Fu, Xiangmin Xu, and Jun Yang
Appl. Opt. 53(5) 951-959 (2014)

Extended dual-grating alignment method for optical projection lithography

Wangfu Chen, Wei Yan, Song Hu, Yong Yang, and Shaolin Zhou
Appl. Opt. 49(4) 708-713 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20(21), 23643–23652 (2012).
    [Crossref] [PubMed]
  2. B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
    [Crossref] [PubMed]
  3. C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.
  4. H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
    [Crossref]
  5. D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
    [Crossref]
  6. M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
    [Crossref]
  7. H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
    [Crossref]
  8. M. Gruber, D. Hagedorn, and W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40(28), 5052–5055 (2001).
    [Crossref] [PubMed]
  9. L. Jiang and M. Feldman, “Accurate alignment technique for nanoimprint lithography,” Proc. SPIE 5752, 429–437 (2005).
    [Crossref]
  10. T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
    [Crossref]
  11. K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: an experimental approach,” Opt. Lasers Eng. 50(6), 887–899 (2012).
    [Crossref]
  12. K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev. 31(4), 358–367 (2011).
    [Crossref]
  13. Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
    [Crossref]
  14. N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
    [Crossref] [PubMed]
  15. S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, and Y. Yang, “Fourier-based analysis of moiré fringe patterns of superposed gratings in alignment of nanolithography,” Opt. Express 16(11), 7869–7880 (2008).
    [Crossref] [PubMed]
  16. S. Zhou, Y. Yang, L. Zhao, and S. Hu, “Tilt-modulated spatial phase imaging method for wafer-mask leveling in proximity lithography,” Opt. Lett. 35(18), 3132–3134 (2010).
    [Crossref] [PubMed]
  17. F. Xu, S. Hu, and S. Zhou, “Fringe pattern analysis for optical alignment in nanolithography using 2-D Fourier transforms,” Opt. Eng. 50(8), 088001 (2011).
    [Crossref]
  18. J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
    [Crossref]
  19. F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
    [Crossref]
  20. J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
    [Crossref]
  21. J. Zhu, S. Hu, J. Yu, S. Zhou, Y. Tang, M. Zhong, L. Zhao, M. Chen, L. Li, Y. He, and W. Jiang, “Four-quadrant gratings moiré fringe alignment measurement in proximity lithography,” Opt. Express 21(3), 3463–3473 (2013).
    [Crossref] [PubMed]
  22. S. Zhou, S. Hu, Y. Fu, X. Xu, and J. Yang, “Moiré interferometry with high alignment resolution in proximity lithographic process,” Appl. Opt. 53(5), 951–959 (2014).
    [Crossref] [PubMed]
  23. Y. C. Park and S. W. Kim, “Determination of two-dimensional planar displacement by moiré fringes of concentric-circle gratings,” Appl. Opt. 33(22), 5171–5176 (1994).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
[Crossref]

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

J. Zhu, S. Hu, J. Yu, S. Zhou, Y. Tang, M. Zhong, L. Zhao, M. Chen, L. Li, Y. He, and W. Jiang, “Four-quadrant gratings moiré fringe alignment measurement in proximity lithography,” Opt. Express 21(3), 3463–3473 (2013).
[Crossref] [PubMed]

2012 (3)

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

M. C. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20(21), 23643–23652 (2012).
[Crossref] [PubMed]

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: an experimental approach,” Opt. Lasers Eng. 50(6), 887–899 (2012).
[Crossref]

2011 (4)

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev. 31(4), 358–367 (2011).
[Crossref]

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

F. Xu, S. Hu, and S. Zhou, “Fringe pattern analysis for optical alignment in nanolithography using 2-D Fourier transforms,” Opt. Eng. 50(8), 088001 (2011).
[Crossref]

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

2006 (1)

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
[Crossref] [PubMed]

2005 (1)

L. Jiang and M. Feldman, “Accurate alignment technique for nanoimprint lithography,” Proc. SPIE 5752, 429–437 (2005).
[Crossref]

2001 (2)

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

M. Gruber, D. Hagedorn, and W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40(28), 5052–5055 (2001).
[Crossref] [PubMed]

1994 (3)

H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
[Crossref]

M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
[Crossref]

Y. C. Park and S. W. Kim, “Determination of two-dimensional planar displacement by moiré fringes of concentric-circle gratings,” Appl. Opt. 33(22), 5171–5176 (1994).
[Crossref] [PubMed]

1988 (1)

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

1977 (1)

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
[Crossref]

Atoda, N.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

Austin, S.

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
[Crossref]

Bass, R.

H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
[Crossref]

Burrow, G. M.

Chen, M.

Chen, W.

Chitnis, V. T.

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

Chou, S. Y.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
[Crossref] [PubMed]

Coady, D.

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

David, C.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Ding, Y. C.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Duerig, U.

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

Eckert, W.

Ekinci, Y.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Feldman, M.

L. Jiang and M. Feldman, “Accurate alignment technique for nanoimprint lithography,” Proc. SPIE 5752, 429–437 (2005).
[Crossref]

H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
[Crossref]

Flanders, D. C.

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
[Crossref]

Fu, Y.

Fujigaki, M.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Furuhashi, H.

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

Gallatin, G.

M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
[Crossref]

Gaylord, T. K.

Gruber, M.

Hagedorn, D.

Hanada, R.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

He, Y.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

J. Zhu, S. Hu, J. Yu, S. Zhou, Y. Tang, M. Zhong, L. Zhao, M. Chen, L. Li, Y. He, and W. Jiang, “Four-quadrant gratings moiré fringe alignment measurement in proximity lithography,” Opt. Express 21(3), 3463–3473 (2013).
[Crossref] [PubMed]

Hedrick, J.

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

Hoh, K.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

Hu, S.

Itoh, J.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

Jiang, L.

L. Jiang and M. Feldman, “Accurate alignment technique for nanoimprint lithography,” Proc. SPIE 5752, 429–437 (2005).
[Crossref]

Jiang, W.

Kanayama, T.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

Kim, S. W.

Kirk, E.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Knoll, A.

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

Kreuzer, J. L.

M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
[Crossref]

Langner, A.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Leibovici, M. C.

Li, J. L.

F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
[Crossref]

Li, L.

Li, L. L.

F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
[Crossref]

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

Li, N.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
[Crossref] [PubMed]

Li, X.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Liu, H. Z.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Masaya, A.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Morimoto, Y.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Nelson, M.

M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
[Crossref]

Päivänranta, B.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Park, Y. C.

Ratnam, M. M.

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: an experimental approach,” Opt. Lasers Eng. 50(6), 887–899 (2012).
[Crossref]

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev. 31(4), 358–367 (2011).
[Crossref]

Rawlings, C.

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

Seto, H.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Shao, J. Y.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Shimo, K.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Smith, H. I.

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
[Crossref]

Tang, X.

Tang, Y.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

J. Zhu, S. Hu, J. Yu, S. Zhou, Y. Tang, M. Zhong, L. Zhao, M. Chen, L. Li, Y. He, and W. Jiang, “Four-quadrant gratings moiré fringe alignment measurement in proximity lithography,” Opt. Express 21(3), 3463–3473 (2013).
[Crossref] [PubMed]

Tian, H. M.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Uchida, M.

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

Uchida, Y.

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

Wu, W.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
[Crossref] [PubMed]

Xu, F.

F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
[Crossref]

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

F. Xu, S. Hu, and S. Zhou, “Fringe pattern analysis for optical alignment in nanolithography using 2-D Fourier transforms,” Opt. Eng. 50(8), 088001 (2011).
[Crossref]

Xu, X.

Yang, J.

Yang, Y.

Yen, K. S.

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: an experimental approach,” Opt. Lasers Eng. 50(6), 887–899 (2012).
[Crossref]

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev. 31(4), 358–367 (2011).
[Crossref]

Yu, J.

Yu, J. S.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

Zhao, L.

Zhong, M.

Zhou, H.

H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
[Crossref]

Zhou, S.

Zhou, S. L.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

Zhu, J.

Zhu, J. P.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett. 31(7), 426–428 (1977).
[Crossref]

J. Vac. Sci. Technol. B (3)

M. Nelson, J. L. Kreuzer, and G. Gallatin, “Design and test of a through-the-mask alignment sensor for a vertical stage X-ray aligner,” J. Vac. Sci. Technol. B 12(6), 3251–3255 (1994).
[Crossref]

H. Zhou, M. Feldman, and R. Bass, “Subnanometer alignment system for x-ray lithography,” J. Vac. Sci. Technol. B 12(6), 3261–3264 (1994).
[Crossref]

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B 6(1), 409–412 (1988).
[Crossref]

Nano Lett. (1)

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6(11), 2626–2629 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

F. Xu, S. Hu, and S. Zhou, “Fringe pattern analysis for optical alignment in nanolithography using 2-D Fourier transforms,” Opt. Eng. 50(8), 088001 (2011).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol. 44(2), 446–451 (2012).
[Crossref]

Opt. Lasers Eng. (2)

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Lasers Eng. 51(4), 371–381 (2013).
[Crossref]

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: an experimental approach,” Opt. Lasers Eng. 50(6), 887–899 (2012).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

F. Xu, S. Hu, Y. Yang, J. L. Li, and L. L. Li, “Single closed fringe pattern phase demodulation in alignment of nanolithography,” Optik (Stuttg.) 124(9), 818–823 (2013).
[Crossref]

Proc. SPIE (2)

H. Furuhashi, M. Uchida, Y. Uchida, and V. T. Chitnis, “Rough alignment system using moire gratings for lithography,” Proc. SPIE 4417, 568–575 (2001).
[Crossref]

L. Jiang and M. Feldman, “Accurate alignment technique for nanoimprint lithography,” Proc. SPIE 5752, 429–437 (2005).
[Crossref]

SAE Int J. Masetr Manuf. (1)

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf. 4(1), 1107–1113 (2011).
[Crossref]

Sensor Rev. (1)

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev. 31(4), 358–367 (2011).
[Crossref]

Other (1)

C. Rawlings, U. Duerig, J. Hedrick, D. Coady, and A. Knoll, “Nanometer control of the markerless overlay process using thermal scanning proble lithography,” in Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), pp. 1670–1675.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The two group circular grating marker and the corresponding fringe: (a) the mask alignment grating maker; (b) the wafer alignment grating marker; (c) the fringe distribution of misalignment; (d) the fringe distribution if alignment.
Fig. 2
Fig. 2 The relation between two group circular grating markers in polar coordinates system.
Fig. 3
Fig. 3 The two group grating marker and the corresponding fringe: (a) the mask aligment grating maker; (b) the wafer alignment grating marker; (c) the fringe distribution of unalignment; (d) the fringe distribution of alignment.
Fig. 4
Fig. 4 The designed alignment mark: (a) the whole alignment mark; (b)the circular alignment marks in (a); (c) the upper left alignment marks in (a); (d) local SEM image of single circular alignment mark with magnification of 1.5E3;(e) local SEM image of line alignment mark with magnification of 6E3.
Fig. 5
Fig. 5 (a) the experiment setup; (b) the captured moiré fringe pattern for coarse alignment (c) the captured moiré fringe pattern for fine alignment with 4 μ m and 4.4μm gratings.
Fig. 6
Fig. 6 The coarse alignment process: (a) the wrapped phase after process for Fig. 5(b) ; (b) the fringe pattern after moving 2T1 along x axis; (c) the wrapped phase after process for (b); (d)the unwrapped phase of (a) in polar coordinate system; (e) the unwrapped phase of (c) in polar coordinate system.
Fig. 7
Fig. 7 The fine alignment process: (a) the wrapped phase after process for Fig. 5(c); (b)the unwrapped phase of (a); (c) the fringe pattern after moving 0.1μm along x axis; (d) the wrapped phase after process for (c);(e) the unwrapped phase of (d).
Fig. 8
Fig. 8 Measured error related to input step displacement in coarse alignment.
Fig. 9
Fig. 9 Measured error related to input step displacement in coarse alignment: (a) the input step is 0.02μm with grating period 2μm and 2.2μm; (b) the input step is 0.05μm with grating period 4μm and 4.4μm; (c) the input step is 1μm with grating period 6μm and 8μm; (d) the input step is 0.2μm with grating period 8μm and 10μm.

Tables (1)

Tables Icon

Table 1 The mean errors and standard deviations of each group grating (nm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I 1 (x,y)=a(x,y)+b(x,y)cos( 2π( f 1 (x+Δx) 2 + (y+Δy) 2 f 2 x 2 + y 2 ) )
I 2 (x,y)=a(x,y)+b(x,y)cos( 2π( f 1 x 2 + y 2 f 2 x 2 + y 2 ) )
Φ(ρ,θ)=2π( f 1 (ρcosθ+εcosφ) 2 + (ρsinθ+εsinφ) 2 f 2 ρ )
Φ(ρ,θ)=2π( f 1 f 2 )ρ+2π f 1 εcos(θφ)
Δx=εcosφ
Δy=εsinφ
I upper (x,y)=a(x,y)+b(x,y)cos[2π f 1 (x+Δx)2π f 2 x]
I lower (x,y)=a(x,y)+b(x,y)cos[2π f 1 x2π f 2 (xΔx)]
ΔΦ= Φ 1 (x,y) Φ 2 (x,y)=2π( f 1 + f 2 )Δx
Δx= ΔΦ T 1 T 2 2π| T 1 + T 2 |

Metrics