Abstract

We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Hari P. Paudel, John Taranto, Jerome Mertz, and Thomas Bifano, "Axial range of conjugate adaptive optics in two-photon microscopy: erratum," Opt. Express 23, 27635-27635 (2015)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-21-27635

OSA Recommended Articles
Field of view advantage of conjugate adaptive optics in microscopy applications

Jerome Mertz, Hari Paudel, and Thomas G. Bifano
Appl. Opt. 54(11) 3498-3506 (2015)

A pragmatic guide to multiphoton microscope design

Michael D. Young, Jeffrey J. Field, Kraig E. Sheetz, Randy A. Bartels, and Jeff Squier
Adv. Opt. Photon. 7(2) 276-378 (2015)

Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor

Jiang Li, Devin R. Beaulieu, Hari Paudel, Roman Barankov, Thomas G. Bifano, and Jerome Mertz
Optica 2(8) 682-688 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940, (2005).
    [Crossref] [PubMed]
  2. E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
    [Crossref]
  3. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139 (2006).
    [Crossref]
  4. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
    [Crossref]
  5. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 um in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28, 1022–1024 (2003).
    [Crossref] [PubMed]
  6. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
    [Crossref] [PubMed]
  7. R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
    [Crossref]
  8. D. R. Williams, “Imaging single cells in the living retina,” Vis. Res. 51(13) 1379–1396 (2011).
    [Crossref] [PubMed]
  9. J. A. Kubby, ed., Adaptive Optics for Biological Imaging (CRC, 2013).
    [Crossref]
  10. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3, e165 (2014).
    [Crossref]
  11. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521–17532 (2010).
    [Crossref] [PubMed]
  12. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
    [Crossref] [PubMed]
  13. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
    [Crossref] [PubMed]
  14. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
    [Crossref] [PubMed]
  15. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
    [Crossref] [PubMed]
  16. N. Olivier, D. Débarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett. 34, 3145–3147 (2009).
    [Crossref] [PubMed]
  17. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
    [Crossref] [PubMed]
  18. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
    [Crossref]
  19. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
    [Crossref] [PubMed]
  20. C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
    [Crossref] [PubMed]
  21. L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23, 6145–6150 (2015).
    [Crossref] [PubMed]
  22. J. M. Beckers, “Increasing the size of the isoplanatic patch within multiconjugate adaptive optics,” in Proc. of European Southern Observatory Conference and Workshop on Very Large Telescopes and Their Instrumentation (ESO), 693–703 (1988).
  23. D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
    [Crossref]
  24. R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
    [Crossref]
  25. A. Tokovinin, M. Le Louarn, and M. Sarazin, “Isoplanatism in a multiconjugate adaptive optics system,” J. Opt. Soc. Am. A 17, 1819–1827 (2000).
    [Crossref]
  26. A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory MCAO test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
    [Crossref] [PubMed]
  27. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
    [Crossref] [PubMed]
  28. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
    [Crossref] [PubMed]
  29. R. D. Simmonds and M. J. Booth, “Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy,” J. Opt. 15, 094010 (2013).
    [Crossref]
  30. T.-W. Wu and M. Cui, “Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy,” Opt. Express 23, 7463–7470 (2015).
    [Crossref] [PubMed]
  31. J. Mertz, H. Paudel, and T. G. Bifano, “Field of view advantage of conjugate adaptive optics in microscopy applications,” Appl. Opt. 54, 3498–3506 (2015).
    [Crossref] [PubMed]
  32. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
    [Crossref] [PubMed]
  33. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient descent technique for high-resolution wavefront phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998).
    [Crossref]
  34. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
    [Crossref] [PubMed]

2015 (3)

2014 (3)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3, e165 (2014).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

2013 (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

R. D. Simmonds and M. J. Booth, “Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy,” J. Opt. 15, 094010 (2013).
[Crossref]

2012 (1)

2011 (1)

D. R. Williams, “Imaging single cells in the living retina,” Vis. Res. 51(13) 1379–1396 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

2007 (2)

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref] [PubMed]

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
[Crossref] [PubMed]

2006 (2)

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139 (2006).
[Crossref]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

2003 (2)

2002 (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

2001 (1)

E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
[Crossref]

2000 (3)

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
[Crossref]

A. Tokovinin, M. Le Louarn, and M. Sarazin, “Isoplanatism in a multiconjugate adaptive optics system,” J. Opt. Soc. Am. A 17, 1819–1827 (2000).
[Crossref]

1998 (1)

1994 (1)

Agard, D.

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
[Crossref] [PubMed]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

Azucena, O.

Beaurepaire, E.

N. Olivier, D. Débarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett. 34, 3145–3147 (2009).
[Crossref] [PubMed]

E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
[Crossref]

Beckers, J. M.

J. M. Beckers, “Increasing the size of the isoplanatic patch within multiconjugate adaptive optics,” in Proc. of European Southern Observatory Conference and Workshop on Very Large Telescopes and Their Instrumentation (ESO), 693–703 (1988).

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Bifano, T.

Bifano, T. G.

Booth, M.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3, e165 (2014).
[Crossref]

R. D. Simmonds and M. J. Booth, “Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy,” J. Opt. 15, 094010 (2013).
[Crossref]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

Botcherby, E. J.

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Burns, D.

Cao, J.

Chen, T.-W.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Crest, J.

Cui, M.

Dainty, J. C.

Débarre, D.

Denk, W.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139 (2006).
[Crossref]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940, (2005).
[Crossref] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 um in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28, 1022–1024 (2003).
[Crossref] [PubMed]

Dillon, D.

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Esposito, S.

Gavel, D.

Girkin, J. M.

Goncharov, A. V.

Hasan, M. T.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940, (2005).
[Crossref] [PubMed]

Hoffman, S.

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Ji, N.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Johnston, D. C.

Juškaitis, R.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

Kam, Z.

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
[Crossref] [PubMed]

Kawata, S.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

Kerlin, A.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Kim, D. S.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Kner, P.

Knutsson, P.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Kong, L.

Kubby, J.

Le Louarn, M.

Liu, R.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Lu, Y.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
[Crossref] [PubMed]

Marchetti, E.

R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
[Crossref]

Marsh, P. N.

Mertz, J.

J. Mertz, H. Paudel, and T. G. Bifano, “Field of view advantage of conjugate adaptive optics in microscopy applications,” Appl. Opt. 54, 3498–3506 (2015).
[Crossref] [PubMed]

E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
[Crossref]

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Moore, J.

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

Oheim, M.

E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
[Crossref]

Olivier, N.

Olivier, S.

Owner-Petersen, M.

Paudel, H.

Paxman, R.

Popovic, Z.

Puglisi, A.

Ragazzoni, R.

R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
[Crossref]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
[Crossref] [PubMed]

Sarazin, M.

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Schwertner, M.

Sedat, J. W.

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
[Crossref] [PubMed]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

Simmonds, R. D.

R. D. Simmonds and M. J. Booth, “Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy,” J. Opt. 15, 094010 (2013).
[Crossref]

Sivokon, V. P.

Srinivas, S.

Stockbridge, C.

Sullivan, W.

Sun, W.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Tan, Z.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Tanaka, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

Thaung, J.

Theer, P.

Tokovinin, A.

Toussaint, K.

Tyson, R.

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
[Crossref]

Vatente, G.

R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
[Crossref]

Vorontsov, M. A.

Wang, C.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Watanabe, T.

Welsh, B. M.

Williams, D. R.

D. R. Williams, “Imaging single cells in the living retina,” Vis. Res. 51(13) 1379–1396 (2011).
[Crossref] [PubMed]

Wilson, T.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Wu, T.-W.

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Microsc. (3)

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1) 33–42 (2007).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000).
[Crossref] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[Crossref] [PubMed]

J. Opt. (1)

R. D. Simmonds and M. J. Booth, “Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy,” J. Opt. 15, 094010 (2013).
[Crossref]

J. Opt. Soc. Am. A (4)

Light: Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3, e165 (2014).
[Crossref]

Nat. Methods (3)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940, (2005).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010).
[Crossref]

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T.-W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11, 1037–1040 (2014).
[Crossref] [PubMed]

Nat. Methods. (1)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625–628 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In-vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Nature (London) (1)

R. Ragazzoni, E. Marchetti, and G. Vatente, “Adaptive-optics corrections available for the whole sky,” Nature (London) 403, 54–56 (2000).
[Crossref]

Opt. Commun. (1)

E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188, 25–29, (2001).
[Crossref]

Opt. Express (8)

O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521–17532 (2010).
[Crossref] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[Crossref] [PubMed]

A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory MCAO test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
[Crossref] [PubMed]

L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23, 6145–6150 (2015).
[Crossref] [PubMed]

M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[Crossref] [PubMed]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref] [PubMed]

T.-W. Wu and M. Cui, “Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy,” Opt. Express 23, 7463–7470 (2015).
[Crossref] [PubMed]

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phil. Trans. R. Soc. A (1)

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci. U.S.A. 103, 17137–17142 (2006).
[Crossref] [PubMed]

Vis. Res. (1)

D. R. Williams, “Imaging single cells in the living retina,” Vis. Res. 51(13) 1379–1396 (2011).
[Crossref] [PubMed]

Other (3)

J. A. Kubby, ed., Adaptive Optics for Biological Imaging (CRC, 2013).
[Crossref]

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
[Crossref]

J. M. Beckers, “Increasing the size of the isoplanatic patch within multiconjugate adaptive optics,” in Proc. of European Southern Observatory Conference and Workshop on Very Large Telescopes and Their Instrumentation (ESO), 693–703 (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a two-photon microscope with pupil AO and conjugate AO. HWP=half wave plate, QWP=quarter wave plate, PBS=polarizing beam splitter, M=mirror, FM=flip mirror, and PMT=photomultiplier tube, PDM=pupil deformable mirror, CM=conjugate mirror, CDM=conjugate deformable mirror, and f1–f6=lenses. Optics enclosed in the dashed box comprise the conjugate AO component of microscope. Two thick arrows indicate the displacement of CDM and CM from image planes (indicated by dashed lines) to the aberration conjugate planes. Components in blue indicate parts mounted on a common motorized translation stage. Rays in blue illustrate representative changes depending on the position of the conjugate plane.

Fig. 2
Fig. 2

Fluorescent beads (1μm diameter) in a 250 μm × 250 μm FOV imaged through the phase screen, (a) without correction, (b) with conjugate AO correction, and (c) with pupil AO correction. Higher resolution images (100 μm × 100 μm FOV) are also shown (d) without correction, (e) with conjugate AO correction, and (f) with pupil AO correction. Scale bars are 25 μm for images (a)–(c) and 10 μm for images (d)–(f)

Fig. 3
Fig. 3

(a) Topographic map of phase screen, (b) topographic map of CDM surface after AO correction, and (c) phase map of PDM after AO correction in wavefront units. Note: there is about a 7× magnification difference between the aberration plane and the conjugate CDM plane.

Fig. 4
Fig. 4

Normalized averaged square root of fluorescent intensity of images versus axial translation of the CDM conjugated plane. The straight red line indicates the average square root of fluorescence intensity without conjugate AO correction.

Metrics