Abstract

A highly efficient and stable mid-infrared optical parametric oscillator is demonstrated, pumped by an electro-optic Q-switched Er:YAG laser with operating wavelength locked at 1645 nm by a volume Bragg grating. The oscillator, based on MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal, yields a maximum overall average output power in excess of 1 W, corresponding to a conversion efficiency of 35.5% and a slope efficiency of 43.6%. The signal and idler wavelengths of the OPO are around ~2.7 μm and ~4.3 μm, respectively, corresponding to the two peak absorption bands of CO2. Lasing characteristics of the oscillator, including the time evolution of the pump, signal and idler pulses at different pump power levels, are also investigated. Temperature tuning of the MgO:PPLN crystal gives signal and idler ranges of 2.67 to 2.72 μm and 4.17 to 4.31 μm, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser

Mingjian Wang, Liang Zhu, Weibiao Chen, and Dianyuan Fan
Opt. Lett. 37(13) 2682-2684 (2012)

Green-pumped, picosecond MgO:PPLN optical parametric oscillator

Florian Kienle, Dejiao Lin, Shaif-ul Alam, Hazel S. S. Hung, Corin B. E. Gawith, Huw E. Major, David J. Richardson, and David P. Shepherd
J. Opt. Soc. Am. B 29(1) 144-152 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Tanaka and T. Yamanouchi, “Absorption properties of the near infrared CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 17(3), 421–432 (1977).
    [Crossref]
  2. J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
    [Crossref]
  3. H. Jelínková, M. E. Doroshenko, M. Jelínek, J. Šulc, V. V. Osiko, V. V. Badikov, and D. V. Badikov, “Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett. 38(16), 3040–3043 (2013).
    [Crossref] [PubMed]
  4. U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
    [Crossref] [PubMed]
  5. C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
    [Crossref]
  6. M. Wang, L. Zhu, W. Chen, and D. Fan, “Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser,” Opt. Lett. 37(13), 2682–2684 (2012).
    [Crossref] [PubMed]
  7. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008).
    [Crossref] [PubMed]
  8. J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
    [Crossref] [PubMed]
  9. J. Liu, W. Yao, C. Zhao, D. Shen, and D. Fan, “Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser,” Appl. Opt. 53(35), 8256–8260 (2014).
    [Crossref] [PubMed]
  10. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
    [Crossref]
  11. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  12. X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
    [Crossref]
  13. M. Eichhorn, “Transient wavelength performance of 1.53 μm InP laser diodes for pumping of Er3+-doped solid-state lasers,” Appl. Opt. 47(17), 3129–3133 (2008).
    [Crossref] [PubMed]
  14. L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
    [Crossref]
  15. N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
    [Crossref]
  16. X. Zhang, D. Shen, H. Huang, J. Liu, X. Liu, J. Zhang, J. Zhang, D. Tang, and D. Fan, “Widely tunable, narrow bandwidth polycrystalline ceramic Er:YAG laser with a volume Bragg grating,” Opt. Express 22(6), 7154–7159 (2014).
    [Crossref] [PubMed]
  17. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20(1), 52–54 (1995).
    [Crossref] [PubMed]
  18. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [Crossref] [PubMed]
  19. B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 microm,” Opt. Lett. 35(8), 1118–1120 (2010).
    [Crossref] [PubMed]
  20. M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
    [Crossref] [PubMed]
  21. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett. 35(19), 3210–3212 (2010).
    [Crossref] [PubMed]
  22. P. E. Britton, H. L. Offerhaus, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Parametric oscillator directly pumped by a 1.55-mum erbium-fiber laser,” Opt. Lett. 24(14), 975–977 (1999).
    [Crossref] [PubMed]
  23. Y. E. Young, S. D. Setzler, T. M. Pollak, and E. P. Chicklis, “Optical parametric oscillator pumped at 1645 nm by a 9 W, fiber-laser-pumped, Q-switched Er:YAG laser,” Advanced Solid-State Photonics (ASSP) TuC, TuC2 (2004).
  24. M. W. Haakestad, H. Fonnum, G. Arisholm, E. Lippert, and K. Stenersen, “Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped fiber laser,” Opt. Express 18(24), 25379–25388 (2010).
    [Crossref] [PubMed]
  25. P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
    [Crossref] [PubMed]
  26. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
    [Crossref]

2015 (1)

2014 (3)

2013 (1)

2012 (3)

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

M. Wang, L. Zhu, W. Chen, and D. Fan, “Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser,” Opt. Lett. 37(13), 2682–2684 (2012).
[Crossref] [PubMed]

2011 (1)

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

2010 (3)

2008 (3)

2006 (2)

2005 (1)

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

2003 (1)

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

2002 (1)

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

1999 (1)

1995 (2)

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20(1), 52–54 (1995).
[Crossref] [PubMed]

1977 (1)

M. Tanaka and T. Yamanouchi, “Absorption properties of the near infrared CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 17(3), 421–432 (1977).
[Crossref]

Arisholm, G.

Badikov, D. V.

Badikov, V. V.

Barnola, J. M.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Belenky, G. L.

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

Bosenberg, W. R.

Britton, P. E.

Broderick, N. G. R.

Byer, R. L.

Chen, H.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Chen, W.

Clarkson, W. A.

Doroshenko, M. E.

Ebrahim-Zadeh, M.

Eckardt, R. C.

Eichhorn, M.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

M. Eichhorn, “Transient wavelength performance of 1.53 μm InP laser diodes for pumping of Er3+-doped solid-state lasers,” Appl. Opt. 47(17), 3129–3133 (2008).
[Crossref] [PubMed]

Esteban-Martin, A.

Fan, D.

Fejer, M. M.

Fischer, H.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Fonnum, H.

Fredrich-Thornton, S. T.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Gao, C. Q.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Gao, M. W.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Haakestad, M. W.

Halonen, L.

Hanna, D. C.

Harren, F. J. M.

Henderson, A.

Heumann, E.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Huang, B.

Huang, H.

Huber, G.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Jelínek, M.

Jelínková, H.

Jouzel, J.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Keeling, C. D.

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

Kim, J. G.

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Kokabee, O.

Kong, J.

Kou, H. M.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Lefort, L.

Li, J.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Lippert, E.

Liu, J.

Liu, X.

Lüthi, D.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Malinowski, A.

Martinelli, R. U.

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

Masson-Delmotte, V.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Miller, G. D.

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Monnin, E.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Muys, P.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Myers, L. E.

Nilsson, J.

O’Connor, M. V.

Offerhaus, H. L.

Osiko, V. V.

Ottevaere, H.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Pan, Y. B.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Parriaux, O.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Peltola, J.

Persijn, S.

Price, J. H. V.

Raynaud, D.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Richardson, D. J.

Ross, G. W.

Sahu, J. K.

Schwander, J.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Shen, D.

Shen, D. Y.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Shen, Y.

Shepherd, D. P.

Shterengas, L.

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

Siegenthaler, U.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Smith, P. G. R.

Stafford, R.

Stauffer, B.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Stenersen, K.

Stocker, T. F.

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Šulc, J.

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Tanaka, M.

M. Tanaka and T. Yamanouchi, “Absorption properties of the near infrared CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 17(3), 421–432 (1977).
[Crossref]

Tang, D.

Tang, P.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Thienpont, H.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Tonchev, S.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Vainio, M.

van der Plichtt, J.

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

Vermeulen, N.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Wahlen, M.

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

Wang, M.

Wang, R.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Wasylczyk, P.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Watson, M. A.

Wen, S.

Whorf, T. P.

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

Wu, B.

Xu, C.

Yamanouchi, T.

M. Tanaka and T. Yamanouchi, “Absorption properties of the near infrared CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 17(3), 421–432 (1977).
[Crossref]

Yang, X. F.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Yao, W.

Zhang, J.

Zhang, X.

Zhao, C.

Zhao, T.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Zheng, Y.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Zhou, J.

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Zhu, L.

Zhu, L. N.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers,” Appl. Phys. Lett. 83(10), 1926–1928 (2003).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Tanaka and T. Yamanouchi, “Absorption properties of the near infrared CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 17(3), 421–432 (1977).
[Crossref]

Laser Phys. (1)

X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li, H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic laser with 11 W of output power at 1645 nm,” Laser Phys. 21(6), 1013–1016 (2011).
[Crossref]

Laser Phys. Lett. (1)

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674 (2012).
[Crossref]

Nature (1)

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plichtt, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).
[Crossref]

Opt. Express (6)

Opt. Lett. (8)

M. Wang, L. Zhu, W. Chen, and D. Fan, “Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser,” Opt. Lett. 37(13), 2682–2684 (2012).
[Crossref] [PubMed]

H. Jelínková, M. E. Doroshenko, M. Jelínek, J. Šulc, V. V. Osiko, V. V. Badikov, and D. V. Badikov, “Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett. 38(16), 3040–3043 (2013).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 microm,” Opt. Lett. 35(8), 1118–1120 (2010).
[Crossref] [PubMed]

O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett. 35(19), 3210–3212 (2010).
[Crossref] [PubMed]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20(1), 52–54 (1995).
[Crossref] [PubMed]

P. E. Britton, H. L. Offerhaus, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Parametric oscillator directly pumped by a 1.55-mum erbium-fiber laser,” Opt. Lett. 24(14), 975–977 (1999).
[Crossref] [PubMed]

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “High-performance wavelength tuning of a mid-infrared solid-state laser using a resonant diffraction grating,” Proc. SPIE 8433, 843307 (2012).
[Crossref]

Science (1)

U. Siegenthaler, T. F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J. M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel, “Stable carbon cycle-climate relationship during the late Pleistocene,” Science 310(5752), 1313–1317 (2005).
[Crossref] [PubMed]

Other (1)

Y. E. Young, S. D. Setzler, T. M. Pollak, and E. P. Chicklis, “Optical parametric oscillator pumped at 1645 nm by a 9 W, fiber-laser-pumped, Q-switched Er:YAG laser,” Advanced Solid-State Photonics (ASSP) TuC, TuC2 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental schematic of the OPO system: (a) the pump laser source; (b) the OPO cavity.
Fig. 2
Fig. 2 Output powers versus incident pump power for the OPO system at pulse repetition rates of 1, 2, and 3 kHz, respectively.
Fig. 3
Fig. 3 Pulse temporal profiles of the signal, idler and residual pump for different pump powers of (a) 0.2 W, (b) 1.5 W and (c) 2.5 W, respectively, at the repetition rate of 1 kHz.
Fig. 4
Fig. 4 Conversion efficiency versus incident pump power at the repetition rate of 1 kHz.
Fig. 5
Fig. 5 Output spectrum of the OPO laser system measured at room temperature.
Fig. 6
Fig. 6 Temperature tuning curve (circles) of the signal and idler wavelength, compared with theoretical values (solid line) according to the Sellmeier equations.

Metrics