Abstract

We propose an ultranarrow bandwidth perfect infrared absorber consisting of a metal periodic structured surface with nanoslits, a spacer dielectric, and a metal back plate. Its bandwidth and aborption are respectively about 8 nm and 95%. The thickness of the nanobars and the spacer, and the width of the nanoslits are primary factors determining the absorption performance. This structure not only has narrow bandwidth but also can obtain the giant electric field enhancement in the tiny volume of the nanoslits. Operated as a refractive index sensor, this structure has figure of merit as high as 25. It has potential in biomedical and sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metal-dielectric-metal based narrow band absorber for sensing applications

Xiaoyuan Lu, Rengang Wan, and Tongyi Zhang
Opt. Express 23(23) 29842-29847 (2015)

Perfect narrow band absorber for sensing applications

Shiwen Luo, Jun Zhao, Duluo Zuo, and Xinbing Wang
Opt. Express 24(9) 9288-9294 (2016)

Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency

Yongzhi Cheng, Hui Luo, Fu Chen, and Rongzhou Gong
OSA Continuum 2(7) 2113-2122 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref] [PubMed]
  3. J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
    [Crossref]
  4. J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
    [Crossref] [PubMed]
  5. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
    [Crossref] [PubMed]
  6. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [Crossref] [PubMed]
  7. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
    [Crossref]
  8. X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
    [Crossref] [PubMed]
  9. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
    [Crossref]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  12. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
    [Crossref]
  13. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
    [Crossref] [PubMed]
  14. N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  15. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
    [Crossref]
  16. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
    [Crossref] [PubMed]
  17. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
    [Crossref] [PubMed]
  18. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  19. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
    [Crossref] [PubMed]
  20. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
    [Crossref]
  21. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
    [Crossref] [PubMed]
  22. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  23. H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  24. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
    [Crossref]
  25. Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
    [Crossref]
  26. J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
    [Crossref]
  27. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
    [Crossref]
  28. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
    [Crossref]
  29. I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).
  30. M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).
  31. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  32. A. D. Rakic, A. B. Djuric, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  33. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
    [Crossref]

2014 (5)

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
[Crossref] [PubMed]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

2013 (3)

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

2012 (4)

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

2011 (4)

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
[Crossref] [PubMed]

2010 (6)

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

2008 (3)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2004 (1)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

1998 (1)

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

1965 (1)

Albrektsen, O.

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Apell, S. P.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

Asano, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Atwater, H. A.

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Bozhevolnyi, S. I.

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Chen, L.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Chen, S.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Chen, X.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Copner, N.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Cui, D.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Cui, Y. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

De Zoysa, M.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Djuric, A. B.

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).

Dorpe, P. V.

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Duyne, R. P. V.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Elazar, J. M.

Fang, N. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Federico, C.

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Fung, K. H.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Giessen, H.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Gong, Y. K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Gramotnev, D. K.

Hägglund, C.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

He, J.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

He, S. L.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Huang, C.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Huang, J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Huang, P.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Huang, W. P.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Jin, Y.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kimerling, L. C.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Kumar, A.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Lagae, L.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

Li, K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Li, Q.

Li, W.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Li, X.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Lieber, C. M.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Lin, J.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref] [PubMed]

Lu, G.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Lu, H.

Lu, X. Y.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Majewski, M. L.

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

Mao, D.

Martinez, J. J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Michel, J.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Mu, J. W.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Nie, Z.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Nielsen, M. G.

Niu, G.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Noda, S.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Park, H. K.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Polman, A.t

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Pors, A.

Qiu, M.

Rakic, A. D.

Rees Whippey, D.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Ruan, Z.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Stakenborg, T.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Wan, R. G.

Wang, G.

Wang, G. X.

Wang, S.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Wang, Z.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Wei, Q. Q.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Xu, J.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Yang, Y.

Ye, J.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Yu, N. F.

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Zhang, T. Y.

Zhang, W. F.

Zhao, D.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

ACS Nano (2)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

J. Phys. Chem. Lett. (1)

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

Nano Lett. (2)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Nat. Mater. (5)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Plasmonics (1)

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Science (1)

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Other (1)

M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of MNNM structure and the incident light configuration. Yellow, blue, purple, and light green represent gold, SiO2, glass, and tested sample, respectively.
Fig. 2
Fig. 2 (a) Calculated reflectivity, transmission and absorption spectra of the MNNM structure. The dot curve represents the reflective spectrum of the MNN structure. (b) Power flux density Poav, loss of electromagnetic Qe, (c) electric field E and magnetic field H distributions in the MNNM structure. Parameters are t = 70 nm, w = 380 nm, L = 250 nm, h = 40 nm, p = 1.5 μm, s1, s2, and s3 are 20 nm, 120 nm, and 220 nm, respectively.
Fig. 3
Fig. 3 (a) The dependence of reflective spectra of the MNNM structure on spacer thickness. Inset demonstrates the resonant wavelength shift with increasing spacer thickness. (b) FWHM and dips of reflective spectra when spacer thickness is increased. Parameters: s1 = 20 nm, s2 = 120 nm, s3 = 220 nm, h = 40 nm, t = 70 nm, w = 380 nm.
Fig. 4
Fig. 4 (a) Reflectivity spectra, FWHM and reflectivity dip as a function of nanoslit width. Bottom left inset: reflectivity spectrum of MNNM without nanoslit (or s1 = 0 nm). (b) Reflectivity spectra, FWHM, reflectivity dip at resonant frequency with nanobar thickness increasing. Parameters: L = 250 nm, t = 70 nm (a), s1 = 20 nm (b).
Fig. 5
Fig. 5 (a) Reflective spectra of the MNNM structure with varying refractive index of surrounding the nanobar array. (b) Resonant Wavelength of the MNNM structure as a function of the surrounding refractive index of nanobar array. Parameters: L = 168 nm, s1 = 18 nm, w = 380 nm, p = 1.5 μm, t = 70 nm, and h = 40 nm. The refractive index is from 1.302 to 1.352.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = Δ λ Δ n , FOM = S FWHM , S * = Δ I Δ n , FOM * = S * I

Metrics