Abstract

We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ∼80 MHz and ∼200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ∼1800 nm. With the average pump power increasing from ∼200 to 450 mW, the center wavelength of the 1st DW decreases from ∼956 to 890 nm, the 2nd DW from ∼1039 to 997 nm, the 3rd DW from ∼1101 to 1080 nm, and the 4th DW from ∼1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ∼1400 and 2000 nm are investigated at the average pump power of ∼350 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm

Tonglei Cheng, Lei Zhang, Xiaojie Xue, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 23(4) 4125-4134 (2015)

Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber

Tonglei Cheng, Ryo Usaki, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Meisong Liao, Yasuhire Kanou, Morio Matsumoto, Takashi Misumi, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 22(4) 3740-3746 (2014)

Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber

Tonglei Cheng, Yasuhire Kanou, Xiaojie Xue, Dinghuan Deng, Morio Matsumoto, Takashi Misumi, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 22(19) 23019-23025 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2007).
  2. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
    [Crossref] [PubMed]
  3. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).
  4. T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
    [Crossref]
  5. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
    [Crossref]
  6. A. C. Judge, O. Bang, and C. M. de Sterke, “Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27(11), 2195–2202 (2010).
    [Crossref]
  7. F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22(3), 2451–2458 (2014).
    [Crossref] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  9. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
    [Crossref] [PubMed]
  10. W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
    [Crossref] [PubMed]
  11. A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
    [Crossref] [PubMed]
  12. M. Billet, F. Braud, A. Bendahmane, M. Conforti, A. Mussot, and A. Kudlinski, “Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber,” Opt. Express 22(21), 25673–25678 (2014).
    [Crossref] [PubMed]
  13. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009).
    [Crossref] [PubMed]
  14. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  15. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012).
    [Crossref] [PubMed]
  17. G. Manili, A. Tonello, D. Modotto, M. Andreana, V. Couderc, U. Minoni, and S. Wabnitz, “Gigantic dispersive wave emission from dual concentric core microstructured fiber,” Opt. Lett. 37(19), 4101–4103 (2012).
    [Crossref] [PubMed]
  18. T. L. Cheng, D. H. Deng, X. J. Xue, L. Zhang, T. Suzuki, and Y. Ohishi, “Highly efficient tunable dispersive wave in a tellurite microstructured optical fiber,” IEEE Photon. J. 7, 2200107–1-7 (2014).
  19. G. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
    [Crossref] [PubMed]
  20. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
    [Crossref] [PubMed]
  21. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
    [Crossref] [PubMed]
  22. T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
    [Crossref] [PubMed]
  23. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
    [Crossref] [PubMed]
  24. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
    [Crossref] [PubMed]
  25. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
    [Crossref] [PubMed]
  26. T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
    [Crossref] [PubMed]
  27. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  28. W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
    [Crossref]
  29. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
    [Crossref]
  30. X. Yan, G. S. Qin, M. S. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B 28(8), 1831–1836 (2011).
    [Crossref]
  31. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (4)

2011 (4)

2010 (3)

2009 (2)

2008 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

2004 (1)

2001 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

1986 (1)

Agrawal, G. P.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Andersen, T. V.

Andreana, M.

Arteaga-Sierra, F. R.

Asano, K.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Bang, O.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Bendahmane, A.

Bhadra, S. K.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Billet, M.

Boppart, S. A.

Braud, F.

Bushong, E. J.

Chang, G.

Chaudhari, C.

Chen, H. H.

Chen, L. J.

Cheng, T.

Cheng, T. L.

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Choudhary, A.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Conforti, M.

Cordeiro, C. M. B.

Couderc, V.

Cristiani, I.

Cronin-Golomb, M.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Dávila, A.

de Sterke, C. M.

Degiorgio, V.

Deng, D.

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Domachuk, P.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Ferrando, A.

Fujimoto, J. G.

Gao, J.

Gao, W.

Gao, W. Q.

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A. K.

Ghanta, R. K.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hartl, I.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Jakobsen, C.

Johansen, J.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Judge, A.

Judge, A. C.

Kanou, Y.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Kärtner, F. X.

Kito, C.

Knight, J. C.

Ko, T. H.

König, F.

Kudlinski, A.

Lægsgaard, J.

Larsen, C.

Lee, Y. C.

Li, X. D.

Liao, M.

Liao, M. S.

Lin, A.

Liu, X.

Manili, G.

Matsumoto, M.

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Menyuk, C. R.

Milián, C.

Minoni, U.

Misumi, T.

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Modotto, D.

Møller, U.

Mori, A.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

Moselund, P. M.

Mussot, A.

Ohishi, Y.

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
[Crossref] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
[Crossref] [PubMed]

X. Yan, G. S. Qin, M. S. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B 28(8), 1831–1836 (2011).
[Crossref]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[Crossref] [PubMed]

Omenetto, F. G.

Qin, G.

Qin, G. S.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Roy, S.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Skryabin, D. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Sørensen, S. T.

Suzuki, T.

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
[Crossref] [PubMed]

X. Yan, G. S. Qin, M. S. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B 28(8), 1831–1836 (2011).
[Crossref]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
[Crossref] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[Crossref] [PubMed]

Tang, P.

Tartara, L.

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Tediosi, R.

Thomsen, C. L.

Tonello, A.

Torres-Cisneros, M.

Torres-Gómez, I.

Toulouse, J.

Tu, H.

Turchinovich, D.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wabnitz, S.

Wai, P. K. A.

Wang, A.

Wang, W.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wolchover, N. A.

Xue, X.

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Yan, X.

Yang, H.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yulin, A. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

Zhang, A.

Zhao, C.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Appl. Phys. Lett. (1)

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Curr. Sci. (1)

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

J. Ceram. Soc. Jpn. (1)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

W. Q. Gao, T. L. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Opt. Express (11)

M. Billet, F. Braud, A. Bendahmane, M. Conforti, A. Mussot, and A. Kudlinski, “Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber,” Opt. Express 22(21), 25673–25678 (2014).
[Crossref] [PubMed]

T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
[Crossref] [PubMed]

W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
[Crossref] [PubMed]

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22(3), 2451–2458 (2014).
[Crossref] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
[Crossref] [PubMed]

A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
[Crossref] [PubMed]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009).
[Crossref] [PubMed]

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009).
[Crossref] [PubMed]

Opt. Lett. (8)

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[Crossref] [PubMed]

G. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
[Crossref] [PubMed]

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012).
[Crossref] [PubMed]

G. Manili, A. Tonello, D. Modotto, M. Andreana, V. Couderc, U. Minoni, and S. Wabnitz, “Gigantic dispersive wave emission from dual concentric core microstructured fiber,” Opt. Lett. 37(19), 4101–4103 (2012).
[Crossref] [PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39(4), 1005–1007 (2014).
[Crossref] [PubMed]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2007).

T. L. Cheng, D. H. Deng, X. J. Xue, L. Zhang, T. Suzuki, and Y. Ohishi, “Highly efficient tunable dispersive wave in a tellurite microstructured optical fiber,” IEEE Photon. J. 7, 2200107–1-7 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Calculated modal refractive indices of two axes and the corresponding beat lengths. Inset is the cross-section of the BTMOF. (b) Calculated chromatic dispersion curves of the fast and slow axes. Insets are the fundamental mode fields at ∼1800 nm. (c) Calculated effective mode areas and nonlinear coefficients of the BTMOF.
Fig. 2
Fig. 2 Experimental setup for DW and soliton generation in the BTMOF.
Fig. 3
Fig. 3 DW and soliton spectra of the fast axis and slow axis at ∼1800 nm, ∼200 mW.
Fig. 4
Fig. 4 Multiple DWs emitted by multiple solitons with the average pump power of ∼200, 350, and 450 mW at ∼1800 nm.
Fig. 5
Fig. 5 (a) Calculated phase mismatching for the 1st DW at the average pump power of ∼200, 350, and 450 mW. (b) Calculated phase mismatching for the 1st, 2nd, 3rd and 4th DW at the average pump power of ∼450 mW.
Fig. 6
Fig. 6 Measured spectra with the average pump power of ∼350 mW at the pump wavelength of ∼1400, 1800 and 2000 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B m = | β x β y | k 0 =| n x n y |
L B = 2π | β x β y | = λ | n x n y |
n2 β n ( ω S ) n! ( ω DW ω S ) n = γ P S 2

Metrics