Abstract

A Nd3+-doped tellurite-glass terrace microsphere was fabricated, and its laser characteristics using free-space pumping were investigated. A localized laser heating technique was used for preparing the 29-µm-diameter microsphere. The uncoated sphere exhibited many laser lines with 1.3-mW threshold. Fewer laser lines were observed after terrace formation. The terrace microsphere’s lasing threshold was 0.6–2.4 mW depending on the pumping position in the terrace. These results indicate that the terrace structure can modify the modes of a microsphere laser and decrease the laser threshold due to an increase in the coupling efficiency between the cavity and free-space beam.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of stimulated Raman scattering in terrace-microspheres

Hiyori Uehara, Tetsuo Kishi, Tetsuji Yano, and Shuichi Shibata
J. Opt. Soc. Am. B 28(10) 2436-2443 (2011)

Single mode green lasing and multicolor luminescent emission from an Er3+-Yb3+ co-doped compound fluorosilicate glass microsphere resonator

Xin Wang, Yongze Yu, Shunbin Wang, Jonathan M. Ward, Síle Nic Chormaic, and Pengfei Wang
OSA Continuum 1(1) 261-273 (2018)

Laser emission of a Nd-doped mixed tellurite and zinc oxide glass

M. J. V. Bell, V. Anjos, L. M. Moreira, R. F. Falci, L. R. P. Kassab, D. S. da Silva, J. L. Doualan, P. Camy, and R. Moncorgé
J. Opt. Soc. Am. B 31(7) 1590-1594 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998).
    [Crossref]
  2. S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
    [Crossref] [PubMed]
  3. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
    [Crossref]
  4. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
    [Crossref] [PubMed]
  5. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [Crossref] [PubMed]
  6. K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
    [Crossref]
  7. K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
    [Crossref]
  8. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [Crossref] [PubMed]
  9. G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
    [Crossref] [PubMed]
  10. G. S. Murugan, M. N. Zervas, Y. Panitchob, and J. S. Wilkinson, “Integrated Nd-doped borosilicate glass microsphere laser,” Opt. Lett. 36(1), 73–75 (2011).
    [PubMed]
  11. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
    [Crossref]
  12. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref] [PubMed]
  13. S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
    [Crossref]
  14. H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
    [Crossref]
  15. M. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
    [Crossref]
  16. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  17. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
    [Crossref]
  18. Y. Ruan, K. Boyd, H. Ji, A. Francois, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
    [Crossref] [PubMed]
  19. T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
    [Crossref]
  20. T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
    [Crossref]
  21. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984).
    [Crossref]
  22. Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
    [Crossref]
  23. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
    [Crossref]
  24. R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
    [Crossref] [PubMed]
  25. X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
    [Crossref]
  26. Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
    [Crossref]

2015 (1)

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

2014 (1)

2012 (2)

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

2011 (2)

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
[Crossref]

G. S. Murugan, M. N. Zervas, Y. Panitchob, and J. S. Wilkinson, “Integrated Nd-doped borosilicate glass microsphere laser,” Opt. Lett. 36(1), 73–75 (2011).
[PubMed]

2010 (2)

2007 (2)

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
[Crossref] [PubMed]

I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32(2), 166–168 (2007).
[Crossref] [PubMed]

2006 (1)

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

2005 (1)

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

2004 (1)

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

2003 (2)

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

2000 (1)

1998 (1)

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998).
[Crossref]

1996 (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
[Crossref]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1993 (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

1992 (1)

V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

1990 (1)

M. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

1984 (1)

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Ashida, S.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

Barber, P. W.

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Boyd, K.

Brune, M.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Cai, M.

Cai, Z. P.

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Chen, R.

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Collot, L.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Conwell, P. R.

Datsyuk, V.

V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

Donegan, J. F.

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

Elliott, G. R.

Féron, P.

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Francois, A.

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Grudinin, I. S.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Hewak, D. W.

Hirao, K.

K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
[Crossref]

Ji, H.

Jiang, S.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Jiang, S. B.

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Kishi, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Kumagai, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Kusawake, K.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

Kuwata-Gonokami, M.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998).
[Crossref]

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Maleki, L.

Miura, K.

K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
[Crossref]

Monro, T. M.

Mortier, M.

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Munch, J.

Murugan, G. S.

Nunoshita, M.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

Ohta, J.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

Painter, O.

Panitchob, Y.

Peng, X.

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Peyghambarian, N.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Qua, T.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Raimond, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Raimond, J. M.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Rakovich, Y. P.

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Ruan, Y.

Rushforth, C. K.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Sasagawa, K.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

Segawa, H.

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
[Crossref] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

Sercel, P. C.

Shibata, S.

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
[Crossref]

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
[Crossref] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Song, F.

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Stéphan, G. M.

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Sun, H. D.

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Takeda, K.

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998).
[Crossref]

Tanaka, K.

K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
[Crossref]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Uehara, H.

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Weber, M.

M. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

Wilkinson, J. S.

Wu, J.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Xu, H. Y.

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Xu, L.

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Yano, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
[Crossref]

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
[Crossref] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

Zervas, M. N.

Acc. Chem. Res. (1)

S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40(9), 913–920 (2007).
[Crossref] [PubMed]

AIP Adv. (1)

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3+-doped tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Appl. Phys. B (1)

V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

Appl. Phys. Lett. (2)

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 µm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Europhys. Lett. (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

J. Appl. Phys. (1)

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

J. Mater. Sci. Lett. (1)

K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996).
[Crossref]

J. Non-Cryst. Solids (1)

M. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Sol-Gel Sci. Technol. (2)

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40(2-3), 379–384 (2006).
[Crossref]

H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol–gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58(1), 319–325 (2011).
[Crossref]

Laser Photonics Rev. (1)

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. P. Cai, H. Y. Xu, G. M. Stéphan, P. Féron, and M. Mortier, “Red-shift in Er:ZBLALiP whispering gallery mode laser,” Opt. Commun. 229(1-6), 311–315 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (2)

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998).
[Crossref]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Proc. SPIE 4969, 255–262 (2003).
[Crossref]

Sci. Rep. (1)

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental apparatus used to pump the terrace microsphere and obtain its emission spectrum.
Fig. 2
Fig. 2 (a) Optical photograph of a terrace microsphere attached to a silica glass substrate. (b) Schematic of the terrace microsphere.
Fig. 3
Fig. 3 Emission spectra from (a) uncoated and (b) terrace microspheres at various excitation powers. Pumping positions for (a) and (b) were the edge of the sphere and that of the terrace, respectively, and the pumping wavelengths were 803.5 and 805.3 nm, respectively. The power of the CW Ti:sapphire laser irradiated on each sample is represented by Pex. The bottom spectra are based on Qsca values calculated using Mie theory for a 28.82-µm microsphere. The dotted lines indicate the resonance wavelengths of WGMs. The parameters an,l and bn,l are the transverse magnetic and electric modes, respectively. The subscripts n and l indicate the mode number and order of each resonance, respectively.
Fig. 4
Fig. 4 Plots of emission intensities of (a) uncoated and (b, c) terrace microspheres versus the excitation power of the Ti:sapphire laser. Pumping positions are the edge of the sphere, center of the terrace, and edge of the terrace for (a), (b), and (c), respectively. Solid lines indicate the least-squares fitting results, and the lasing threshold is given by the intersection of curves with the horizontal axis. The inset photograph is the terrace microsphere pumped above the laser threshold.
Fig. 5
Fig. 5 Peak wavelengths versus excitation power for (a) uncoated and (b, c) terrace microspheres. Solid lines represent the least-squares fitting results. Pumping positions were the (a) edge of the sphere, (b) center of the terrace, and (c) edge of the terrace.
Fig. 6
Fig. 6 Lasing threshold versus the ratio of the wavelength shift (Δλ) and increase in the excitation power (ΔPex). Closed circles indicate the results for the terrace microsphere at various pumping positions in the terrace. The open circle indicates the results for the uncoated sphere pumped at the edge of the sphere. The error bars represent 0.1 mW because of the instability of the excitation laser. The dashed line is a guide for the eye.

Metrics