Abstract

This article proposes a polarized entangled photon source in optical fiber with low Raman noise that features the controllable generation of specific signal and idler wavelengths (colors) by varying the pump power. The novel two color source can provide needed telecom entangled photon wavelengths for applications in quantum communications, quantum computing, and quantum imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber

Bin Fang, Offir Cohen, and Virginia O. Lorenz
J. Opt. Soc. Am. B 31(2) 277-281 (2014)

CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer

Yan Li, Zhi-Yuan Zhou, Dong-Sheng Ding, and Bao-Sen Shi
Opt. Express 23(22) 28792-28800 (2015)

Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber

Xiaoying Li, Paul L. Voss, Jun Chen, Jay E. Sharping, and Prem Kumar
Opt. Lett. 30(10) 1201-1203 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref] [PubMed]
  2. R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
    [Crossref]
  3. R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
    [Crossref]
  4. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
    [Crossref]
  5. S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
    [Crossref]
  6. S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
    [Crossref] [PubMed]
  7. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5919 (2001).
    [Crossref] [PubMed]
  8. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2002).
  9. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  10. X-s Ma, S. Kropatschek, W. Naylor, T. Scheidl, J. Kofler, T. Herbst, A. Zeilinger, and R. Ursin, “Experimental quantum teleportation over a high-loss free-space channel,” Opt. Express 20, 23126 (2012)
    [Crossref] [PubMed]
  11. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [Crossref]
  12. Y. H. Shih and C .O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, ”Phys. Rev. Lett. 61, 2921–2924 (1988).
    [Crossref] [PubMed]
  13. C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  14. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
    [Crossref]
  15. S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
    [Crossref]
  16. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
    [Crossref]
  17. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589 (2009).
    [Crossref]
  18. B. Fang, O. Cohen, and V. O. Lorenz, “Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber,” J. Opt. Soc. Am. B 31, 277–281 (2014).
    [Crossref]
  19. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
    [Crossref]
  20. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  21. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [Crossref]
  22. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001)
    [Crossref]
  23. M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
    [Crossref]
  24. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
    [Crossref] [PubMed]
  25. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [Crossref]
  26. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652 (1984).
    [Crossref]
  27. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and Brillouin scattering,” Appl. Opt. 11, 2489 (1972).
    [Crossref] [PubMed]
  28. Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
    [Crossref]
  29. G. P. Agarwal, Nonlinear Fiber Optics (Academic, 1989).
  30. J. J. Sakurai and J. Napolitano, Modern quantum mechanics (Addison Wesley, 2011), pp. 356.
  31. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [Crossref]
  32. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
    [Crossref]
  33. N. A. Silva and A. N. Pinto, “Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM,” IEEE J. Quantum Electron. 48(11), 1380–1388 (2012).
    [Crossref]
  34. M. H. Rubin and Y. H. Shih, “Models of a two-photon Einstein-Podolsky-Rosen interference experiment,” Phys. Rev. A 45, 8138 (1990).
    [Crossref]
  35. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595 (1998).
    [Crossref]
  36. S. Dong, Q. Zhou, W. Zhang, Y. He, W. Zhang, L. You, Y. Huang, and J. Peng, “Energy-time entanglement generation in optical fibers under CW pumping,” Opt. Express 22, 359–368 (2014).
    [Crossref] [PubMed]
  37. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
    [Crossref] [PubMed]

2015 (3)

S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
[Crossref] [PubMed]

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

2014 (2)

2013 (1)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

2012 (2)

N. A. Silva and A. N. Pinto, “Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM,” IEEE J. Quantum Electron. 48(11), 1380–1388 (2012).
[Crossref]

X-s Ma, S. Kropatschek, W. Naylor, T. Scheidl, J. Kofler, T. Herbst, A. Zeilinger, and R. Ursin, “Experimental quantum teleportation over a high-loss free-space channel,” Opt. Express 20, 23126 (2012)
[Crossref] [PubMed]

2011 (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

2010 (1)

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

2009 (1)

2008 (2)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

2007 (3)

R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
[Crossref]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
[Crossref] [PubMed]

Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[Crossref]

2005 (2)

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

2004 (1)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

2001 (4)

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5919 (2001).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001)
[Crossref]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

1998 (1)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595 (1998).
[Crossref]

1997 (1)

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1990 (1)

M. H. Rubin and Y. H. Shih, “Models of a two-photon Einstein-Podolsky-Rosen interference experiment,” Phys. Rev. A 45, 8138 (1990).
[Crossref]

1988 (1)

Y. H. Shih and C .O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, ”Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

1987 (1)

C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1984 (1)

1972 (1)

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Agarwal, G. P.

Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[Crossref]

G. P. Agarwal, Nonlinear Fiber Optics (Academic, 1989).

Alley, C .O.

Y. H. Shih and C .O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, ”Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Baldi, P.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Banaszek, K.

Barbier, M.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5919 (2001).
[Crossref] [PubMed]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Chen, J.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2002).

Cohen, O.

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
[Crossref]

Delaye, P.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Dong, S.

Fang, B.

Fickler, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Fiorentino, M.

Garay-Palmett, K.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Gisin, N.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

He, Y.

Herbst, T.

Hong, C .K.

C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Huang, Y.

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Jain, R. K.

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Karmakar, S.

S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
[Crossref] [PubMed]

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Kofler, J.

Krenn, M.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Kropatschek, S.

Kumar, P.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001)
[Crossref]

Lapkiewicz, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Lee, C.

Lee, K. F.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[Crossref]

Lorenz, V. O.

Lundeen, J. S.

Ma, X-s

Mahou, P.

Mandel, L.

C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

McGuinness, H. J.

McKinstrie, C. J.

Meyers, R. E.

S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
[Crossref] [PubMed]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
[Crossref]

Micheli, M. D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Napolitano, J.

J. J. Sakurai and J. Napolitano, Modern quantum mechanics (Addison Wesley, 2011), pp. 356.

Naylor, W.

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2002).

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Ostrowsky, D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Ou, Z. Y.

C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Peng, J.

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Pinto, A. N.

N. A. Silva and A. N. Pinto, “Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM,” IEEE J. Quantum Electron. 48(11), 1380–1388 (2012).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Radic, S.

Ramelow, S.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Rangel-Rojo, R.

Rarity, J. G.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595 (1998).
[Crossref]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5919 (2001).
[Crossref] [PubMed]

Raymer, M. G.

Riedmatten, H. D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

M. H. Rubin and Y. H. Shih, “Models of a two-photon Einstein-Podolsky-Rosen interference experiment,” Phys. Rev. A 45, 8138 (1990).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Sakurai, J. J.

J. J. Sakurai and J. Napolitano, Modern quantum mechanics (Addison Wesley, 2011), pp. 356.

Scheidl, T.

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001)
[Crossref]

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Shih, Y.

S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
[Crossref] [PubMed]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

M. H. Rubin and Y. H. Shih, “Models of a two-photon Einstein-Podolsky-Rosen interference experiment,” Phys. Rev. A 45, 8138 (1990).
[Crossref]

Y. H. Shih and C .O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, ”Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Silva, N. A.

N. A. Silva and A. N. Pinto, “Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM,” IEEE J. Quantum Electron. 48(11), 1380–1388 (2012).
[Crossref]

Smith, B. J.

Smith, R. G.

Stolen, R. H.

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Tanzilli, S.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Tapster, P. R.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595 (1998).
[Crossref]

Tittel, H.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

U’Ren, A. B.

Ursin, R.

Verma, V. B.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Walmsley, I. A.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[Crossref]

You, L.

Zaquine, I.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Zbinden, H.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

Zeilinger, A.

Zhang, W.

Zhou, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26–28 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

N. A. Silva and A. N. Pinto, “Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM,” IEEE J. Quantum Electron. 48(11), 1380–1388 (2012).
[Crossref]

J. Biomed. Opt. (1)

S. Karmakar, R. E. Meyers, and Y. Shih, “Noninvasive high resolving power entangled photon quantum microscope,” J. Biomed. Opt. 20(1), 016008 (2015).
[Crossref] [PubMed]

J. Mod. Opt. (2)

R. E. Meyers, K. S. Deacon, and Y. Shih, “A new two-photon ghost imaging experiment with distortion study,” J. Mod. Opt. 54(16), 2381–2392 (2007).
[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595 (1998).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83 (2015).
[Crossref]

New J. Phys. (2)

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9, 289 (2008).
[Crossref]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (8)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

M. H. Rubin and Y. H. Shih, “Models of a two-photon Einstein-Podolsky-Rosen interference experiment,” Phys. Rev. A 45, 8138 (1990).
[Crossref]

Q. Lin, F. Yaman, and G. P. Agarwal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[Crossref]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

S. Karmakar and Y. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Phys. Rev. Lett. (6)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5919 (2001).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Y. H. Shih and C .O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, ”Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

C .K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref] [PubMed]

Other (3)

G. P. Agarwal, Nonlinear Fiber Optics (Academic, 1989).

J. J. Sakurai and J. Napolitano, Modern quantum mechanics (Addison Wesley, 2011), pp. 356.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed experimental setup to generate color controllable signal and idler photon pairs. BS is a 50–50 beam splitter and DM is a dichoric mirror which transmits idler photons and reflects signal photons. PM is polarization maintaining and PBS is a polarized beam splitter. LLM is a laser line mirror which is used to remove the pump. V- and H- represent vertical and horizontal polarization, respectively. Also, PZT is a piezoelectric transducer driven translation stage, which controls the delay between V-polarized and H-polarized pulses. Later, a PM-delay compensator is used to compensate the delay to overlap H- and V- polarized signal and idler photons. Two quarter wave plates (QWP) are also used to avoid reflection back into the laser. PC is a polarization controller.
Fig. 2
Fig. 2 Phase matching for signal (idler) using a 1560 nm pump at four average pump powers.
Fig. 3
Fig. 3 Wavelength of the signal and idler photons as a function of average pump power.
Fig. 4
Fig. 4 Number of generated signal, idler and Raman (Stokes & Anti-Stokes at T=20 K) photons per pulse as a function of the average power of pump. The inset highlights the difference of signal-idler and Raman photons at low power. The change in the accidental Raman single photon rate is due to a change in the Raman gain as a function of the Raman shift off of the pump [29].
Fig. 5
Fig. 5 Number of generated coincidences in each pulse is shown as a function of the average pump power. The inset represent a clear vision of the difference of true coincidences and accidental coincidences due to Raman scattering at low pump power. The change in the accidental Raman coincidence rate is due to a change in the Raman gain as a function of the Raman shift off of the pump [29].
Fig. 6
Fig. 6 Normalized second order correlation g(2) as a function of the average pump power.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

| Ψ p = 1 2 [ | H s | H i + e 2 i ϕ p | V s | V i ] .
2 ω p = ω s + ω i
Δ k = 2 ω p c n ( ω p ) ω s c n ( ω s ) ω i c n ( ω i ) γ P p
1 λ i + 1 λ s = 2 λ p ,
σ w = 2 π c ( λ w ) 2 Δ λ w ,
σ u σ p = ( λ p λ u ) 2 ( Δ λ u Δ λ p ) .
R c = P p LN up | g R | A eff σ u σ p
N up = { n ( Ω up ) when Ω up > 0 n ( Ω up ) + 1 when Ω up < 0 n ( Ω ip ) = 1 exp ( | Ω up | k B T 1 )
| ψ = | 0 + g L k s , k i F ( k s , k i ) a k s a k i | 0 + ( g L ) 2 k s , k i , k s , k i F ( k s , k i , k s , k i ) a k s a k i a k s a k i | 0 +
F ( k s , k i ) = 1 L L 0 d z exp [ i Δ k z ( ν s + ν i ) 2 4 σ p 2 ]
S c = 0 d T ψ | E s ( ) E s ( + ) | ψ
E s ( + ) = k s c A eff 4 V Q a k s e i ω s t e ( ω s Ω s ) 2 2 σ s 2
ψ | E s ( ) E s ( + ) | ψ = c A eff 4 V Q ( g L ) 2 k i | k s F ( k s , k i ) e i ω s t × e ν s 2 2 σ s 2 | 2 .
S c = A ( γ P p L ) 2 σ s σ p
I c = A ( γ P p L ) 2 σ i σ p
CC = 0 d T 1 0 d T 2 ψ | E 1 ( ) E 2 ( ) E 2 ( + ) E 1 ( + ) | ψ
E 1 ( + ) = k 1 c A eff 4 V Q a k 1 e i ω s t 1 e ( ω s Ω s ) 2 2 σ s 2
E 2 ( + ) = k 2 c A eff 4 V Q a k 2 e i ω i t 2 e ( ω i Ω i ) 2 2 σ i 2
ψ | E 1 ( ) E 2 ( ) E 2 ( + ) E 1 ( + ) | ψ = | 0 | E 2 ( + ) E 1 ( + ) | ψ | 2
0 | E 2 ( + ) E 1 ( + ) | ψ = c A eff 4 V Q g L k s , k i F ( k s , k i ) e i ( ω s t 1 + ω i t 2 ) × e ν s 2 + ν i 2 2 σ i 2
CC = B ( γ P p L ) 2 σ i 2 σ p σ p 2 + σ i 2 = B ( γ P p L ) 2 = 1 σ p σ i ( σ p σ i ) 2 + 1
CC obs = CC + CC acc
g ( 2 ) = 1 + ρ c ,
g ( 2 ) = CC S c I c ,
g ( 2 ) B A 2 ( γ P p L ) 2 1 1 + ( σ i σ p ) 2 ,
CC S c = B A 1 1 + ( σ p σ i ) 2
CC S c = B A 1 2 .

Metrics