Abstract

The design, fabrication and characterization of a miniature adjustable-focus endoscope are reported. Such an endoscope consists of a solid tunable lens for optical power tuning, two slender piezoelectric benders for laterally moving the lens elements perpendicular to the optical axis, and an image fiber bundle for image transmission. Both optical and mechanical designs are presented in this paper. Dynamic tuning of optical powers from about 135 diopters to about 205 diopters is experimentally achieved from the solid tunable lens, which contains two freeform surfaces governed by 6-degree polynomials and optimized by ray tracing studies. Results show that there is no obvious distortion or blurring in the images obtained, and the recorded resolution of the lens reaches about 30 line pairs per mm. Three test targets located at various object distances of 20 mm, 50 mm and 150 mm are focused individually by the endoscope by applying different driving DC voltages to demonstrate its adjustable-focus capability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact optical zoom endoscope using solid tunable lenses

Yongchao Zou, Fook Siong Chau, and Guangya Zhou
Opt. Express 25(17) 20675-20688 (2017)

Ultralow-voltage electrothermal MEMS based fiber-optic scanning probe for forward-viewing endoscopic OCT

Hyeon-Cheol Park, Xiaoyang Zhang, Wu Yuan, Liang Zhou, Huikai Xie, and Xingde Li
Opt. Lett. 44(9) 2232-2235 (2019)

Microelectromechanically-driven miniature adaptive Alvarez lens

Guangya Zhou, Hongbin Yu, and Fook Siong Chau
Opt. Express 21(1) 1226-1233 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Baillie, “The endoscope,” Gastrointest. Endosc. 65(6), 886–893 (2007).
    [Crossref] [PubMed]
  2. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  3. G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
    [Crossref] [PubMed]
  4. Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
    [Crossref] [PubMed]
  5. G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
    [Crossref] [PubMed]
  6. H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
    [Crossref] [PubMed]
  7. R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
    [Crossref]
  8. S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
    [Crossref]
  9. S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).
  10. H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  11. M. S. Chen, P. J. Chen, M. Chen, and Y. H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
    [Crossref] [PubMed]
  12. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
    [Crossref] [PubMed]
  13. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  14. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
    [Crossref] [PubMed]
  15. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1027), 1027 (2012).
    [Crossref] [PubMed]
  16. L. W. Alvarez, “Two-element variable-power spherical lens,” US3305294, Feb. 1967.
  17. A. W. Lohmann, “A New class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970).
    [Crossref] [PubMed]
  18. P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
    [Crossref]
  19. I. M. Barton, S. N. Dixit, L. J. Summers, K. Avicola, and J. Wilhelmsen, “Diffractive Alvarez lens,” Opt. Lett. 25(1), 1–3 (2000).
    [Crossref] [PubMed]
  20. S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
    [Crossref] [PubMed]
  21. Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
    [Crossref]
  22. S. Barbero and J. Rubinstein, “Adjustable-focus lenses based on the Alvarez principle,” J. Opt. 13(12), 125705 (2011).
    [Crossref]
  23. G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
    [Crossref] [PubMed]
  24. H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
    [Crossref]
  25. MEMSCAP, Inc., http://www.memscap.com/products/mumps/soimumps .
  26. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18(12), 12458–12469 (2010).
    [Crossref] [PubMed]
  27. Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
    [Crossref]

2015 (1)

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (3)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1027), 1027 (2012).
[Crossref] [PubMed]

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

2011 (4)

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).

S. Barbero and J. Rubinstein, “Adjustable-focus lenses based on the Alvarez principle,” J. Opt. 13(12), 125705 (2011).
[Crossref]

2010 (4)

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18(12), 12458–12469 (2010).
[Crossref] [PubMed]

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

2009 (2)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
[Crossref] [PubMed]

2007 (1)

J. Baillie, “The endoscope,” Gastrointest. Endosc. 65(6), 886–893 (2007).
[Crossref] [PubMed]

2004 (1)

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

2002 (1)

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

2000 (1)

1970 (1)

Aljasem, K.

Ameer-Beg, S.

Andresen, E. R.

Avicola, K.

Baillie, J.

J. Baillie, “The endoscope,” Gastrointest. Endosc. 65(6), 886–893 (2007).
[Crossref] [PubMed]

Barbero, S.

S. Barbero and J. Rubinstein, “Adjustable-focus lenses based on the Alvarez principle,” J. Opt. 13(12), 125705 (2011).
[Crossref]

S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
[Crossref] [PubMed]

Barton, I. M.

Bouwmans, G.

Chau, F. S.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Chen, H. S.

Chen, M.

Chen, M. S.

Chen, P. J.

Choi, W. B.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Ciuti, G.

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

Cižmár, T.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1027), 1027 (2012).
[Crossref] [PubMed]

Cook, R.

Dario, P.

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

Davies, M. A.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Daweke, R. D. G.

R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
[Crossref]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1027), 1027 (2012).
[Crossref] [PubMed]

Dixit, S. N.

Du, Y.

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Dunsby, C.

Dutterer, B. S.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Farahi, S.

Festy, F.

French, P. M. W.

Fruhwirth, G. O.

Gallo, K.

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

Hamamoto, Y.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Han, S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Inoue, H.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Iwai, T.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Kang, M. S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kawano, T.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Kelp, M.

R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
[Crossref]

Kim, Y. M.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kozu, T.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Kuiper, S.

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).

Kumagai, Y.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Kumar, A. S.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Lehr, H.

R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
[Crossref]

Leung, H. M.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Lin, Y. H.

Lineberger, J. L.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Lohmann, A. W.

Machida, H.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Menciassi, A.

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

Min, N. K.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Monneret, S.

Moser, C.

Muto, M.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Nagai, K.

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

Neil, M. A. A.

Ng, T.

Osiak, P.

R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
[Crossref]

Papadopoulos, I. N.

Paterson, C.

Psaltis, D.

Rigneault, H.

Rubinstein, J.

S. Barbero and J. Rubinstein, “Adjustable-focus lenses based on the Alvarez principle,” J. Opt. 13(12), 125705 (2011).
[Crossref]

Sano, Y.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Seifert, A.

Seo, J. H.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seo, S. W.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Smilie, P. J.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Suleski, T. J.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Summers, L. J.

Sung, M. Y.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Tajiri, H.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Thompson, A. J.

Tian, F.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

Watson, T.

Wilhelmsen, J.

Yoshida, S.

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Yu, H.

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Zappe, H.

Zhang, W.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18(12), 12458–12469 (2010).
[Crossref] [PubMed]

Zhou, G.

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

Zhou, G. Y.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Zou, Y. C.

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

Appl. Opt. (1)

Endoscopy (2)

Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy 34(5), 369–375 (2002).
[Crossref] [PubMed]

H. Machida, Y. Sano, Y. Hamamoto, M. Muto, T. Kozu, H. Tajiri, and S. Yoshida, “Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study,” Endoscopy 36(12), 1094–1098 (2004).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

J. Baillie, “The endoscope,” Gastrointest. Endosc. 65(6), 886–893 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. C. Zou, W. Zhang, F. Tian, F. S. Chau, and G. Y. Zhou, “Development of miniature tunable multi-element Alvarez lenses,” IEEE J. Sel. Top. Quantum Electron. 21(4), 2700408 (2015).
[Crossref]

IEEE Rev. Biomed. Eng. (1)

G. Ciuti, A. Menciassi, P. Dario, and K. Gallo, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng. 20(2), 025021 (2010).
[Crossref]

J. Opt. (2)

Y. C. Zou, G. Y. Zhou, Y. Du, and F. S. Chau, “Alignment tolerances and optimal design of MEMS-driven Alvarez lenses,” J. Opt. 15(12), 125711 (2013).
[Crossref]

S. Barbero and J. Rubinstein, “Adjustable-focus lenses based on the Alvarez principle,” J. Opt. 13(12), 125705 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1027), 1027 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, and T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51(1), 013006 (2012).
[Crossref]

Opt. Express (8)

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

M. S. Chen, P. J. Chen, M. Chen, and Y. H. Lin, “An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses,” Opt. Express 22(10), 11427–11435 (2014).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
[Crossref] [PubMed]

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
[Crossref] [PubMed]

G. Zhou, H. Yu, and F. S. Chau, “Microelectromechanically-driven miniature adaptive Alvarez lens,” Opt. Express 21(1), 1226–1233 (2013).
[Crossref] [PubMed]

S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17(11), 9376–9390 (2009).
[Crossref] [PubMed]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18(12), 12458–12469 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).

Other (3)

R. D. G. Daweke, M. Kelp, H. Lehr, and P. Osiak, “Electromagnetic direct linear drives for medical endoscopes,” in Proceedings of IEEE 2014 International Conference on OPTM, (IEEE, 2014), pp. 245–251.
[Crossref]

L. W. Alvarez, “Two-element variable-power spherical lens,” US3305294, Feb. 1967.

MEMSCAP, Inc., http://www.memscap.com/products/mumps/soimumps .

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (286 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the proposed endoscope. The two insets demonstrate the deflection of the piezoelectric bender and the zoomed-in view of the solid tunable lens configuration, respectively.
Fig. 2
Fig. 2 Schematic of the tunable lens designed according to the Alvarez principle. Two elements are arranged (a) without lateral displacements, and (b) with lateral displacements.
Fig. 3
Fig. 3 Imaging simulation results of the tunable lens. (a) f = 7.5 mm; (b) f = 6.5 mm; and (c) f = 5.5 mm. f is the equivalent focal lengths of the tunable lens. The zoom effect among these three images is not from ZEMAX but from manual adjustment to make the results clearer.
Fig. 4
Fig. 4 Process of lens element fabrication. (a) Metallic mold from diamonding turning technique; (b) PDMS mold from first replication; and (c) lens element from second replication.
Fig. 5
Fig. 5 Device pictures. (a) Suspended window and folded beams fabricated by SOI MUMPs; (b) mechanical parts from precision machining; and (c) piezoelectric bender with home-made connector tip and image fiber bundle.
Fig. 6
Fig. 6 Device pictures. (a) Suspended free-form lens element integrated with the SOI chip; (b) top of the endoscope integrated with the tunable lens having two stacked SOI chips; and (c) endoscope with piezoelectric bender assembled and (d) final endoscope with fiber bundle inserted.
Fig. 7
Fig. 7 (a) Output displacements of one piezoelectric benders with various input voltages; (b) Optical powers of the tunable lens modulated by the input DC voltages.
Fig. 8
Fig. 8 MTF curve of the tunable lens when there is no driving DC voltage.
Fig. 9
Fig. 9 (a) Schematic of the optical setup for testing the response time of the tunable lens; (b) Driving signal and output voltage from optical power meter.
Fig. 10
Fig. 10 Adjustable focus of the endoscope. (a) The driving voltages of the two piezoelectric benders are set at −35 V and −37 V respectively and the target at an object distance of about 20 mm is focused; (b) The driving voltages of the two piezoelectric benders are set at 61 V and 62 V respectively, and the target at an object distance of about 50 mm is focused; (c) The driving voltages of the two piezoelectric benders are set at 85 V and 86 V respectively and the target at an object distance of about 150 mm is focused. A short video demonstrates the dynamic procedure of optical power tuning to focus the three targets individually (Visualization 1).

Tables (3)

Tables Icon

Table 1 Design constrains and goals for the optical part

Tables Icon

Table 2 Coefficient values of the element surface profile after optimization

Tables Icon

Table 3 Summary of the optical performance of the designed tunable lens

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z= i=1 N A i E i ( x,y )

Metrics