Abstract

Thin-film resonant absorbers for the far-IR spectral range were fabricated, characterized, and modeled. The 3-μm-thick structure comprises a periodic surface array of metal squares, a dielectric spacer and a metallic ground plane. Up to 95% absorption for the fundamental band at ~53.5μm wavelength (5.6 THz) is achieved experimentally. Absorption bands are independent of the structure period and only weakly dependent on polarization and incident angle. The results are well explained in terms of standing-wave resonances within individual metal-dielectric-metal cavities. The structure has application as a wavelength selective coating for far-IR bolometers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance

Lin Yang, Peiheng Zhou, Taixing Huang, Guoshuai Zhen, Li Zhang, Lei Bi, Xiaolong Weng, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 7(8) 2767-2776 (2017)

Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures

Boyang Zhang, Joshua Hendrickson, and Junpeng Guo
J. Opt. Soc. Am. B 30(3) 656-662 (2013)

CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [Crossref] [PubMed]
  2. J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).
  3. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007).
    [Crossref]
  4. N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
    [Crossref]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  6. G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
    [Crossref]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  8. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  9. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  10. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  11. Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  12. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  13. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  14. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  15. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
    [Crossref] [PubMed]
  16. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
    [Crossref] [PubMed]
  17. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  18. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  19. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  20. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref] [PubMed]
  21. J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
    [Crossref]
  22. X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
    [Crossref]
  23. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  24. X.-Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J.-H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  25. J. Nath, D. Panjwani, M. Yesiltas, C. Hirschmugl, and R. E. Peale, “Synchrotron infra-red spectral microscopy of metal-dielectric-metal cavity metamaterial absorbers,” Proc. SPIE OP101–57 (2015) (Accepted).
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  27. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  28. B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited,” Opt. Express 16(12), 9073–9086 (2008).
    [Crossref] [PubMed]
  29. M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express 18(21), 21669–21677 (2010).
    [Crossref] [PubMed]
  30. G. L. Pollack and D. R. Stump, Electromagnetism (Addison-Wesley, 2002).
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and far Infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref] [PubMed]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  34. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  35. J. P. Berenger, Perfectly Matched Layer (PML) for Computational Electromagnetic (Morgan & Claypool, 2007).
  36. L. D. Landau, J. S. Bell, M. J. Kearsley, and L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).
  37. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275 (1965).
    [Crossref]
  38. J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
    [Crossref]
  39. R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
    [Crossref]
  40. H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
    [Crossref]
  41. N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
    [Crossref]
  42. N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
    [Crossref]
  43. S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
    [Crossref] [PubMed]

2014 (1)

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

2013 (5)

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (4)

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express 18(21), 21669–21677 (2010).
[Crossref] [PubMed]

2009 (6)

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
[Crossref]

2008 (4)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited,” Opt. Express 16(12), 9073–9086 (2008).
[Crossref] [PubMed]

2007 (4)

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
[Crossref] [PubMed]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

2006 (2)

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

Aizin, G.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Alexander, R. W.

Appleby, R.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Boreman, G.

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Buchwald, W.

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
[Crossref] [PubMed]

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
[Crossref]

Buchwald, W. R.

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Chau, K. J.

Chen, H.-T.

Chen, Q.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cleary, J. W.

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Cofield, R. E.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Crone, G.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Cumming, D. R.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Doyle, D.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Edwards, O. J.

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Esfahani, N. N.

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Eyink, K.

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Figueiredo, P.

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Filipiak, M. J.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Flower, D. A.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Fredricksen, C. J.

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Froidevaux, L.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Fukasawa, R.

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

Gageur, U.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Gaska, R.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Grant, J.

Guo, J.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Harwood, R. S.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

He, S.

Hendrickson, J.

Hendrickson, J. R.

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

Heras, A. M.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Hessel, A.

Hokmabadi, M. P.

Hong, G.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Hu, X.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Imaizumi, M.

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

Jarnot, R. F.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Jewell, C.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Jin, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jonasz, M.

Khalid, A.

Kim, S. M.

Kitamura, R.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kung, P.

Lai, S.

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, Y. X.

Li, Y. Y.

Li, Z.

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y. L.

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Long, L. L.

Luo, C.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Ma, Y.

Maqsood, M. W.

Maukonen, D.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Medhi, G.

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

Mehfuz, R.

Metcalfe, L.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Muravjov, A.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Nader Esfahani, N.

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

Nagai, N.

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

Nath, J.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Oliner, A. A.

Ordal, M. A.

Ott, S.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Padilla, W.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Padilla, W. J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pala, N.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Panjwani, D.

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Passvogel, T.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Peale, R.

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
[Crossref]

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Peale, R. E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

Peng, X.-Y.

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Pickett, H. M.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Pilbratt, G. L.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Pilon, L.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Read, W. G.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Riedinger, J. R.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Saha, S.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Saxena, H.

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
[Crossref]

Schmidt, M.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

Sheng, Y.

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Shu, S.

Shur, M.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Siegel, P. H.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Smith, E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Soref, R.

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Sumitomo, M.

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Teng, J.-H.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tyler, T.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Ung, B.

Veksler, D.

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007).
[Crossref]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Wang, B.

Wang, J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Ward, C. A.

Waters, J. W.

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

Wen, Q. Y.

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Wilbert, D. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Xie, Y. S.

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Yang, Q. H.

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Ye, Y. Q.

Zhang, B.

Zhang, D. H.

Zhang, H. W.

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Zhao, X.

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zummo, G.

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

X. Wang, C. Luo, G. Hong, and X. Zhao, “Metamaterial optical refractive index sensor detected by the naked eye,” Appl. Phys. Lett. 102(9), 091902 (2013).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Astron. Astrophys. (1)

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007).
[Crossref]

IEEE Trans. Geo. Rem. Sens. (1)

J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower, “The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geo. Rem. Sens. 44(5), 1075–1092 (2006).

J. Appl. Phys. (3)

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

H. Saxena, R. Peale, and W. Buchwald, “Tunable two-dimensional plasmon resonances in an ingaas/inp high electron mobility transistor,” J. Appl. Phys. 105(11), 113101 (2009).
[Crossref]

N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, and J. W. Cleary, “Millimeter-wave photo-response due to excitation of two-dimensional plasmons in InGaAs/InPhigh-electron-mobility transistors,” J. Appl. Phys. 114(3), 033105 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (8)

B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited,” Opt. Express 16(12), 9073–9086 (2008).
[Crossref] [PubMed]

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express 18(21), 21669–21677 (2010).
[Crossref] [PubMed]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

X.-Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J.-H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21(14), 16455–16465 (2013).
[Crossref] [PubMed]

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Phys. Rev. B (5)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink, “Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared,” Proc. SPIE 8704, 8041D (2013).
[Crossref]

N. N. Esfahani, C. J. Fredricksen, G. Medhi, R. Peale, J. W. Cleary, W. R. Buchwald, H. Saxena, and O. J. Edwards, “Plasmon resonance response to millimeter-waves of grating-gated InGaAs/InP HEMT,” Proc. SPIE 8023, 80230R (2011).
[Crossref]

R. Peale, H. Saxena, W. Buchwald, G. Aizin, A. Muravjov, D. Veksler, N. Pala, X. Hu, R. Gaska, and M. Shur, “Grating-gate tunable plasmon absorption in InP and GaN basedHEMTs,” Proc. SPIE 7467, 74670Q (2009).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, “Characterization of electron-or proton-irradiated Si space solar cells by THz spectroscopy,” Semicond. Sci. Technol. 21(2), 201–209 (2006).
[Crossref]

Other (5)

G. L. Pollack and D. R. Stump, Electromagnetism (Addison-Wesley, 2002).

J. Nath, D. Panjwani, M. Yesiltas, C. Hirschmugl, and R. E. Peale, “Synchrotron infra-red spectral microscopy of metal-dielectric-metal cavity metamaterial absorbers,” Proc. SPIE OP101–57 (2015) (Accepted).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. P. Berenger, Perfectly Matched Layer (PML) for Computational Electromagnetic (Morgan & Claypool, 2007).

L. D. Landau, J. S. Bell, M. J. Kearsley, and L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of one unit cell of the structure. The edges of the metal stripes are line sources of radiation induced by the incident wave. Standing waves are formed under the stripe with different odd numbers b of reflections from the metal. Shown are rays for b = 1 (a) and b = 3 (b). Resonances correspond to odd integer numbers of half-wavelengths along the indicated paths.
Fig. 2
Fig. 2 Color map of absorptance as a function of wavelength and (a) dielectric thickness or (b) size of squares. Analytically- (dashed line) and numerically- (solid line) calculated resonance wavelengths as a function of (c) dielectric thickness, (d) size of squares.
Fig. 3
Fig. 3 Re(Ez) for λ(1,0), λ(3,0)and λ(1,1) of absorber with l = 11.7 μm and t = 3 μm.
Fig. 4
Fig. 4 Simulated absorptance as a function of wavelength and period of the squares. The size of the squares and thickness of the dielectric are l = 11.7 microns and t = 3 microns, respectively.
Fig. 5
Fig. 5 SEM image of a) sample surface and b) cross-section.
Fig. 6
Fig. 6 Experimental reflectance spectra at 8 deg angle of incidence for different samples with numerical labels indicating SiO2 thickness and square size, (t, l), respectively. Spectra for successively smaller t values are offset vertically by 0.2 units for clarity. The dashed line is the result of numerical calculation for structure values (3.5, 11.7) at normal incidence.
Fig. 7
Fig. 7 Theoretical resonance wavelengths λ(b,m) vs. experimental resonance wavelengths λ(exp) The symbols are the λ(1,0) and λ(3,0)experimental data for different structure dimensions l and t.
Fig. 8
Fig. 8 Numerically calculated absorptance as a function of angle of incidence and wavelength for (a) TM and (b) TE polarization.
Fig. 9
Fig. 9 Angle and polarization dependence of experimental (solid lines) and numerically calculated (dashed lines) reflectance spectra. Device parameters were l = 11.4 μm and t = 2.5 μm. Polarization is TM (left column) and TE (right column). Angle of incidence is indicated.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ=(b+1)n(λ) t 2 + l 2 / (b+1) 2   ,
ϕ= 2πΔ λ bπ.
λ(b,m)= 2(b+1)n(λ) b+2m t 2 + l 2 / (b+1) 2   ,
λ(1,0)=4n(λ) t 2 + l 2 /4  .
λ(3,0)= 8n(λ) 3 t 2 + l 2 /16  .
λ(1,1)= 4n(λ) 3 t 2 + l 2 /4  .

Metrics