Abstract

The temporal evolution of in situ second-harmonic generation was employed to study domain dynamics during periodic poling in Rb-doped KTP. With this method we investigated the influence of various poling parameters, including electric-field pulse shape, pulse magnitude, and number of pulses, on the quality of the QPM structure. It was found that the grating formation can be a sub-millisecond process and the benefits of using symmetric triangular electric-field pulse shape over square pulse shape in the single-pulse poling regime were demonstrated. Multiple-pulse poling with triangular pulses was shown to have a detrimental effect on the QPM structure quality, while multiple square pulses can provide additional flexibility to the structuring process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO4 below 400 nm at high peak-intensities

Andrius Zukauskas, Valdas Pasiskevicius, and Carlota Canalias
Opt. Express 21(2) 1395-1403 (2013)

Contact poling of Rb:KTiOPO4 using a micro-structured silicon electrode

Hoda Kianirad, Andrius Zukauskas, Thomas Frisk, Carlota Canalias, and Fredrik Laurell
Opt. Express 23(2) 636-641 (2015)

Quasi-phase matched second harmonic generation in periodically poled Rb-doped KTiOPO4 ridge waveguide

Cristine C. Kores, Patrick Mutter, Hoda Kianirad, Carlota Canalias, and Fredrik Laurell
Opt. Express 26(25) 33142-33147 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [Crossref]
  2. A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO₄ below 400 nm at high peak-intensities,” Opt. Express 21(2), 1395–1403 (2013).
    [Crossref] [PubMed]
  3. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett. 23(24), 1883–1885 (1998).
    [Crossref] [PubMed]
  4. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [Crossref]
  5. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]
  6. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
    [Crossref]
  7. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP,” Opt. Mater. Express 1(7), 1319–1325 (2011).
    [Crossref]
  8. V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
    [Crossref]
  9. V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85(4), 2304–2311 (1999).
    [Crossref]
  10. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
    [Crossref]
  11. G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
    [Crossref]
  12. W. J. Merz, “Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals,” Phys. Rev. 95(3), 690–698 (1954).
    [Crossref]
  13. E. Fatuzzo and W. J. Merz, “Switching mechanism in triglycine sulfate and other ferroelectrics,” Phys. Rev. 116(1), 61–68 (1959).
    [Crossref]
  14. C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
    [Crossref]
  15. G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
    [Crossref] [PubMed]
  16. R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
    [Crossref]
  17. V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
    [Crossref]

2013 (1)

2012 (1)

2011 (2)

2007 (2)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

2005 (1)

G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
[Crossref] [PubMed]

2001 (1)

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

1999 (3)

V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85(4), 2304–2311 (1999).
[Crossref]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

1998 (2)

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett. 23(24), 1883–1885 (1998).
[Crossref] [PubMed]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

1960 (1)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

1959 (1)

E. Fatuzzo and W. J. Merz, “Switching mechanism in triglycine sulfate and other ferroelectrics,” Phys. Rev. 116(1), 61–68 (1959).
[Crossref]

1954 (1)

W. J. Merz, “Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals,” Phys. Rev. 95(3), 690–698 (1954).
[Crossref]

Canalias, C.

Clemens, R.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

De Natale, P.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

Eger, D.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Fatuzzo, E.

E. Fatuzzo and W. J. Merz, “Switching mechanism in triglycine sulfate and other ferroelectrics,” Phys. Rev. 116(1), 61–68 (1959).
[Crossref]

Ferraro, P.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

Fokine, M.

Garb, K.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Gerra, G.

G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
[Crossref] [PubMed]

Gerstl, S. S. A.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

Gopalan, V.

V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85(4), 2304–2311 (1999).
[Crossref]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

Grilli, S.

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

Hellström, J.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

Ishizuki, H.

Itagi, A.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

Jia, Q. X.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
[Crossref]

Karlsson, H.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett. 23(24), 1883–1885 (1998).
[Crossref] [PubMed]

Katz, M.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Laurell, F.

Merz, W. J.

E. Fatuzzo and W. J. Merz, “Switching mechanism in triglycine sulfate and other ferroelectrics,” Phys. Rev. 116(1), 61–68 (1959).
[Crossref]

W. J. Merz, “Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals,” Phys. Rev. 95(3), 690–698 (1954).
[Crossref]

Miller, R. C.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Mitchell, T. E.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85(4), 2304–2311 (1999).
[Crossref]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Oron, M.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Pasiskevicius, V.

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO₄ below 400 nm at high peak-intensities,” Opt. Express 21(2), 1395–1403 (2013).
[Crossref] [PubMed]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP,” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett. 23(24), 1883–1885 (1998).
[Crossref] [PubMed]

Rosenman, G.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Schlesinger, T. E.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

Setter, N.

G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
[Crossref] [PubMed]

Skliar, A.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

Stancil, D. D.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

Strömqvist, G.

Tagantsev, A. K.

G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
[Crossref] [PubMed]

Taira, T.

Thilmann, N.

Wang, S.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Weinreich, G.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Zukauskas, A.

Appl. Phys. Lett. (3)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasiphase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

V. Gopalan, Q. X. Jia, and T. E. Mitchell, “In situ video observation of 180° domain kinetics in congruent LiNbO3 crystals,” Appl. Phys. Lett. 75(16), 2482–2484 (1999).
[Crossref]

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998).
[Crossref]

J. Appl. Phys. (4)

C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. De Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102(6), 064105 (2007).
[Crossref]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, and D. D. Stancil, “Mobility of 180° domain walls in LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86(3), 1638–1646 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85(4), 2304–2311 (1999).
[Crossref]

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[Crossref]

Nat. Photonics (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. (3)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

W. J. Merz, “Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals,” Phys. Rev. 95(3), 690–698 (1954).
[Crossref]

E. Fatuzzo and W. J. Merz, “Switching mechanism in triglycine sulfate and other ferroelectrics,” Phys. Rev. 116(1), 61–68 (1959).
[Crossref]

Phys. Rev. Lett. (1)

G. Gerra, A. K. Tagantsev, and N. Setter, “Surface-stimulated nucleation of reverse domains in ferroelectrics,” Phys. Rev. Lett. 94(10), 107602 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Applied E-field (black curves) and second harmonic traces (red curves) for the cases of (a) underpoling, (b) grating poling, and (c) overpoling, using square pulses, and (d) underpoling, (e) grating poling, and (f) overpoling, using triangular pulses.
Fig. 3
Fig. 3 Chemically etched domain structures representing grating poling on the former c+ crystal faces; (a) poled with a square pulse (corresponding to Fig. 2b) and (b) poled with a triangular pulse (corresponding to Fig. 2e). The insets show the c- faces of the crystal in the same scale.
Fig. 4
Fig. 4 Second harmonic signal evolution (red) and applied E-field (black) during periodic poling with multiple square (a) and triangular (b) pulses.

Tables (1)

Tables Icon

Table 1 Typical periodic poling results, obtained with square and triangular pulses in the case of underpoling, grating- poling, and overpoling.

Metrics