Abstract

Narrow-linewidth and low phase noise photonic microwave generation under sideband-injection locking are demonstrated using an 8-μm-radius AlGaInAs/InP microdisk laser subject to optical injection and optoelectronic feedback. Microdisk laser subject to external optical injection at the period-one state provides the microwave subcarrier seed signal, and the optoelectronic feedback serves as direct current modulation to stabilize and lock the generated microwave signal without using the electrical filter. High-quality photonic microwave signals are realized with the 3-dB linewidth of less than 1 kHz and the frequency tunable range from 8.8 to 17 GHz. Single sideband phase noise of −101 dBc/Hz is obtained at a frequency offset of 10 kHz for the generated 14.7 GHz signal. Furthermore, the dependences of photonic microwave signal on the optical injection and optoelectronic feedback parameters are investigated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation

Li Fan, Guangqiong Xia, Jianjun Chen, Xi Tang, Qing Liang, and Zhengmao Wu
Opt. Express 24(16) 18252-18265 (2016)

Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin
Opt. Express 17(21) 18596-18605 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
    [Crossref]
  3. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
    [Crossref]
  5. U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
    [Crossref]
  6. X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
    [Crossref]
  7. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
    [Crossref]
  8. A. Neyer and E. Voges, “High‐frequency electro‐optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
    [Crossref]
  9. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  10. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  11. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  12. K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22(15), 18648–18661 (2014).
    [Crossref] [PubMed]
  13. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]
  14. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
    [Crossref] [PubMed]
  15. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
    [Crossref] [PubMed]
  16. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
    [Crossref]
  17. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
    [Crossref]
  18. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  19. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
    [Crossref]
  20. L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
    [Crossref]
  21. L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
    [Crossref]
  22. L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
    [Crossref]
  23. B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
    [Crossref]
  24. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
    [Crossref] [PubMed]
  25. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  26. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
    [Crossref]
  27. X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18(1), 73–78 (2000).
    [Crossref]
  28. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  29. H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
    [Crossref]
  30. T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  31. E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
    [Crossref]
  32. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  33. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
    [Crossref]
  34. X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
    [Crossref]

2015 (3)

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

2014 (4)

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22(15), 18648–18661 (2014).
[Crossref] [PubMed]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

2013 (7)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

2012 (2)

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
[Crossref] [PubMed]

2011 (1)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

2009 (3)

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

2007 (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

2006 (2)

C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
[Crossref]

2004 (1)

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

2000 (1)

1999 (1)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

1996 (1)

1992 (2)

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

1982 (1)

A. Neyer and E. Voges, “High‐frequency electro‐optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Beha, K.

Bloom, D. M.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chan, S. C.

Chang-Hasnain, C. J.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Chen, X. F.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Davis, L.

de Dios, C.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Deng, Z. C.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Diddams, S. A.

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

Donati, S.

Du, Y.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Giuliani, G.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

Hegarty, S. P.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hong, W.

C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Huang, Y. Z.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Hung, Y. H.

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Huyet, H.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Hwang, S. K.

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Lau, E. K.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Lee, H.

Lelarge, L.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Lester, L. F.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Lin, C.

C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Lin, J. D.

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Lintz Christensen, E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Liu, B. W.

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Lo, K. H.

Long, H.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Lv, X. M.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

Maleki, L.

Martinez, A.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

McInerney, J. G.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Merghem, K.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Neyer, A.

A. Neyer and E. Voges, “High‐frequency electro‐optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Papp, S. B.

Parekh, D.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Quinlan, F.

Quirce, A.

Ramdane, A.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Rosales, R.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

Sooudi, E.

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

Sorel, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Strain, M. J.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Sung, H. K.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Vahala, K. J.

Valle, A.

Voges, E.

A. Neyer and E. Voges, “High‐frequency electro‐optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
[Crossref]

Wang, S. J.

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

Wen, S. C.

C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wu, M. C.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Xiao, J. L.

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Yang, Y. D.

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Yao, J. P.

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
[Crossref]

Yao, Q. F.

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

Yao, X. S.

Zanola, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Zhao, X. X.

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Zhuang, J. P.

Zou, L. X.

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Appl. Phys. Lett. (2)

A. Neyer and E. Voges, “High‐frequency electro‐optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6–8 (1982).
[Crossref]

L. X. Zou, B. W. Liu, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “Integrated semiconductor twin-microdisk laser under mutually optical injection,” Appl. Phys. Lett. 106(19), 191107 (2015).
[Crossref]

Electron. Lett. (2)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection-locked laser diodes,” Electron. Lett. 19(13), 491–493 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

L. X. Zou, Y. Z. Huang, B. W. Liu, X. M. Lv, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Nonlinear dynamics for semiconductor microdisk laser subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800408 (2015).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

H. K. Sung, X. X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

E. Sooudi, C. de Dios, J. G. McInerney, H. Huyet, L. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1101208 (2013).
[Crossref]

IEEE Photonics J. (2)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

C. Lin, W. Hong, and S. C. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photonics Technol. Lett. 18(19), 2056–2058 (2006).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers,” IEEE Photonics Technol. Lett. 24(11), 963–965 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54(2), 804–809 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photonics Rev. 7(5), 818–829 (2013).
[Crossref]

Nat. Photonics (2)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Photonics Res. (1)

L. X. Zou, Y. Z. Huang, X. M. Lv, B. W. Liu, H. Long, Y. D. Yang, J. L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photonics Res. 2(6), 177–181 (2014).
[Crossref]

Phys. Rev. Lett. (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Other (1)

B. W. Liu, Y. Z. Huang, H. Long, Y. D. Yang, L. X. Zou, J. L. Xiao, and Y. Du, “Microwave generation directly from microsquare laser subject to optical injection,” IEEE Photonics Technol. Lett. (2015), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the microdisk laser connected to an output waveguide. (b) SEM image of an 8-μm-radius microdisk resonator after ICP etching process. (c) The microscopic image of the microdisk laser after the deposition of the p-type and n-type electrodes.
Fig. 2
Fig. 2 (a) Output powers and voltage versus the applied current, and (b) lasing spectrum at 4.5 and 30 mA, for an 8-μm-radius microdisk laser at 287 K. MMF: multi-mode fiber; SMF: single-mode fiber.
Fig. 3
Fig. 3 Experimental setup for photonic microwave generation based on the microdisk laser under optical injection and optoelectronic feedback loop. SMF: single mode fiber; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; PD: photodetector; BC: blocking capacitor; RF Attn.: variable RF attenuator; OSA: optical spectrum analyzer; ESA: electrical spectrum analyzer; VNA: vector network analyzer.
Fig. 4
Fig. 4 Small-signal modulation responses (a) at the free-running state and bias currents of 20, 25, and 30 mA, and (b) under optical injection at the bias current of 30 mA, the injection optical power of 3 mW, and △f = 10.4, 15.3 and 19.1 GHz, for the 8-μm-radius microdisk laser at 287K.
Fig. 5
Fig. 5 Optical and electrical spectra of the microdisk laser under optical injection, (a) (b) without and (c) (d) with the optoelectronic feedback situation. The injection parameters are P = 4.5 mW and △f = 5.1 GHz, and the feedback strength is optimized by adjusting the variable RF attenuator. Inset in (b) and (d): Zoom-in electrical spectra.
Fig. 6
Fig. 6 SSB phase noise spectra for the generated microwave signal using an optically injected microdisk laser with optoelectronic feedback loop turned off and on, respectively. Measurements are taken with carrier frequencies centered at 13.2 and 14.7 GHz, respectively.
Fig. 7
Fig. 7 Generated frequency tunable microwave signals with the detuning frequency △f varying from 3.16 to 13.55 GHz and the injection optical power Pi of 4 mW, for the microdisk laser at the bias current of 30 mA at 287 K.
Fig. 8
Fig. 8 Evolution of the (a) lasing spectra and (b) microwave signal spectra versus the injection optical power Pi, for the microdisk laser biased at 30 mA with the optoelectronic feedback turned on. Zoom in is the enlarged view of the doubly locked region.
Fig. 9
Fig. 9 Detailed (a) lasing spectra and (b) microwave signal spectra at Pi = 0.1, 4.0 and 4.9 mW, respectively, for the microdisk laser biased at 30 mA with the optoelectronic feedback turned on.
Fig. 10
Fig. 10 (a) Generated microwave signals and (b) lasing spectra at period-one state under optoelectronic feedback with the feedback loop gain of 10, 17, 20, and 23 dB, respectively, for the microdisk laser at bias current of 30 mA, the injection optical power Pi = 4.5 mW and △f = 3.16 GHz.

Metrics