Abstract

A novel in-band OSNR monitor is proposed and experimentally demonstrated for WDM signal. By using a Lyot-Sagnac interferometer, the monitor realized OSNR measurement from 7.5~25 dB (within an accuracy of ± 0.5 dB) for 4-channel 40 Gbaud NRZ-QPSK signals, without requirement for prior knowledge of the noise-free coherence properties of signal. Further investigation proved that this OSNR monitor had high tolerance to chromatic dispersion (0~1152 ps/nm), first-order polarization mode dispersion (0~100 ps), and polarized noise. Moreover, the monitor worked very well even with input optical power as low as −8.24 dBm, and also worked in in C-band. Theoretical analysis and experimental results prove that it is capable of measuring OSNR for polarization-division-multiplexing signals.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering

Mark D. Pelusi, Amy Fu, and Benjamin J. Eggleton
Opt. Express 18(9) 9435-9446 (2010)

Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s

Lamia Baker-Meflah, Benn Thomsen, John Mitchell, and Polina Bayvel
Opt. Express 16(20) 15999-16004 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [Crossref]
  2. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [Crossref]
  3. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [Crossref]
  4. I. Shake and H. Takara, “Averaged Q-factor method using amplitude histogram evaluation for transparent monitoring of optical signal-to-noise ratio degradation in optical transmission system,” J. Lightwave Technol. 20(8), 1367–1373 (2002).
    [Crossref]
  5. Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
    [Crossref]
  6. E. Flood, W. H. Guo, D. Reid, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “In-band OSNR monitoring using a pair of Michelson fiber interferometers,” Opt. Express 18(4), 3618–3625 (2010).
    [Crossref] [PubMed]
  7. M. R. Chitgarha, S. Khaleghi, W. Daab, A. Almaiman, M. Ziyadi, A. Mohajerin-Ariaei, D. Rogawski, M. Tur, J. D. Touch, V. Vusirikala, W. Zhao, and A. E. Willner, “Demonstration of in-service wavelength division multiplexing optical-signal-to-noise ratio performance monitoring and operating guidelines for coherent data channels with different modulation formats and various baud rates,” Opt. Lett. 39(6), 1605–1608 (2014).
    [PubMed]
  8. M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering,” Opt. Express 18(9), 9435–9446 (2010).
    [Crossref] [PubMed]
  9. J. Y. Huh and Y. C. Chung, “Simultaneous monitoring technique for OSNR and PMD based on four-wave mixing in SOA,” in Optical Fiber Communication Conference2008(OFC/NFOEC 2008), paper OThW1.
    [Crossref]
  10. K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
    [Crossref]
  11. N. An, J. Qiu, Z. Huang, B. Yuan, D. Kong, and J. Wu, “Multi-wavelength in-band OSNR monitoring based on Lyot-Sagnac interferometer,” in Optical Fiber Communication Conference2015(OFC 2015), paper Th2A.3.
    [Crossref]
  12. C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
    [Crossref]

2014 (1)

2011 (1)

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

2010 (3)

2006 (1)

2004 (1)

2003 (1)

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

2002 (1)

2001 (1)

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Almaiman, A.

Bach, R.

Barry, L. P.

Blumenthal, D. J.

Bradley, A. L.

Chen, X.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Chen, Y. M.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Chen, Z. Y.

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Cheng, Z.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Chitgarha, M. R.

Choi, H. Y.

Chung, Y.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Chung, Y. C.

Daab, W.

Donegan, J. F.

Eggleton, B. J.

Einstein, D.

Flood, E.

Fu, A.

Fu, L. B.

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Guo, W. H.

Han, Y. G.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Kang, J. U.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Khaleghi, S.

Kilper, D. C.

Kim, C. S.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Landolsi, T.

Lee, J. H.

Lei, G. K. P.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Lynch, M.

Mohajerin-Ariaei, A.

Ostar, L.

Paek, U. C.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Pelusi, M. D.

Preiss, M.

Reid, D.

Rogawski, D.

Shake, I.

Shin, S. K.

Shu, C.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Sova, R. M.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

Takara, H.

Tao, Z. N.

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Touch, J. D.

Tsang, H. K.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Tur, M.

Vusirikala, V.

Wang, L.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Willner, A. E.

Wu, D. M.

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Xu, A. S.

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Xu, K.

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Zhao, W.

Ziyadi, M.

IEEE Photonics J. (1)

K. Xu, H. K. Tsang, G. K. P. Lei, Y. M. Chen, L. Wang, Z. Cheng, X. Chen, and C. Shu, “OSNR monitoring for NRZ-PSK signals using silicon waveguide two-photon absorption,” IEEE Photonics J. 3(5), 968–974 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technol. Lett. 15(2), 269–271 (2003).
[Crossref]

J. Lightwave Technol. (3)

Microw. Opt. Technol. Lett. (1)

Z. N. Tao, Z. Y. Chen, L. B. Fu, D. M. Wu, and A. S. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Opt. Lett. (1)

Other (2)

J. Y. Huh and Y. C. Chung, “Simultaneous monitoring technique for OSNR and PMD based on four-wave mixing in SOA,” in Optical Fiber Communication Conference2008(OFC/NFOEC 2008), paper OThW1.
[Crossref]

N. An, J. Qiu, Z. Huang, B. Yuan, D. Kong, and J. Wu, “Multi-wavelength in-band OSNR monitoring based on Lyot-Sagnac interferometer,” in Optical Fiber Communication Conference2015(OFC 2015), paper Th2A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the proposed OSNR monitor. Transmission spectra when the axes between the PMF and PMF-pigtailed phased modulator are (b) parallel, (c) orthogonal. PC: polarization controller, PMF: polarization maintaining fiber, Mod.: modulator.
Fig. 2
Fig. 2 Experimental setup. Att.: optical attenuator, OSA: optical spectrum analyzer, PMD: polarization mode dispersion, SMF: single mode fiber, Pol.: polarizer, MZM: Mach-Zehnder modulator.
Fig. 3
Fig. 3 Experimental measurement of the two distinct periods of transmission spectra of the Lyot-Sagnac interferometer when (a) θ 1 θ 2 = 90 , (b) θ 1 = θ 2 ; solid and dotted lines stand for the transmission spectra when destructive and constructive interferences occur. (c) Fourier transform of the filter function showing γ n ( Δ τ ) and the filter function (inset).
Fig. 4
Fig. 4 (a) Measured OSNR and error versus reference OSNR of four channels; (b) Measured OSNR and error versus reference OSNR of one channel while the OSNRs of the other channel were fixed.
Fig. 5
Fig. 5 Measured OSNR and the monitoring errors when (a) the OSNR was fixed at 20 dB, the input power was changed from −8.24 dBm to −0.81 dBm; (b) signal wavelength was tuned from 1530 nm to 1565 nm, when the OSNR was fixed at 15 dB and 20 dB.
Fig. 6
Fig. 6 Measured OSNR and the monitoring errors when (a) the input signal was added with CD from 0 to 1152 ps/nm, the OSNR was fixed at 5 dB and 15 dB respectively; (b) with DGD from 0 to 100 ps, the OSNR was fixed at 10 dB and 20 dB respectively; (c) in the cases of adding unpolarized, partially polarized and or polarized noises.
Fig. 7
Fig. 7 Experimental setup for investiging the effect of input polarization on OSNR measurement. Att.: optical attenuator, OSA: optical spectrum analyzer, MZM: Mach-Zehnder modulator.
Fig. 8
Fig. 8 OSNR measurement error as a function of polarized input optical power.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O S N R = 10 log 10 ( 1 r N E B 0.1 ( n m ) ) = 10 log 10 ( r ) + 10 log 10 ( N E B 0.1 ( n m ) )
r = P n / P s = ( γ s ( Δ τ ) μ ) / ( μ γ n ( Δ τ ) )
c 1 Δ τ 1 2 + r ( μ 1 γ n ( Δ τ 1 ) ) = 1 μ 1
c 1 Δ τ 2 2 + r ( μ 2 γ n ( Δ τ 2 ) ) = 1 μ 2
Δ τ 1 _ P o l . x = | τ P o l . x c w τ P o l . x c c w | = | L 2 n 21 + L 1 n 11 c L 1 n 12 + L 2 n 22 c | = | L 1 ( n 11 n 12 ) + L 2 ( n 21 n 22 ) c | = L 1 Δ n 1 + L 2 Δ n 2 c
Δ τ 1 _ P o l . y = | τ P o l . y c w τ P o l . y c c w | = | L 2 n 22 + L 1 n 12 c L 1 n 11 + L 2 n 21 c | = | L 1 ( n 11 n 12 ) + L 2 ( n 21 n 22 ) c | = L 1 Δ n 1 + L 2 Δ n 2 c
Δ τ 2 _ P o l . x = | τ P o l . x .2 c w τ P o l . x .2 c c w | = | L 2 n 21 + L 1 n 12 c L 1 n 11 + L 2 n 22 c | = | L 1 ( n 11 n 12 ) L 2 ( n 21 n 22 ) c | = | L 1 Δ n 1 L 2 Δ n 2 c |
Δ τ 2 _ P o l . y = | τ P o l . y .2 c w τ P o l . y .2 c c w | = | L 2 n 22 + L 1 n 11 c L 1 n 12 + L 2 n 21 c | = | L 1 ( n 11 n 12 ) L 2 ( n 21 n 22 ) c | = | L 1 Δ n 1 L 2 Δ n 2 c |

Metrics