Abstract

In this paper, we demonstrate the direct modulation and direct detection of 28-Gb/s duobinary signal for the future downstream capacity upgrade in next generation passive optical network (PON). Commercial 10-GHz directly modulated laser (DML) and PIN with a combined modulation bandwidth of ~7 GHz are used as transmitter and receiver respectively. In order to mitigate the chromatic dispersion induced signal distortion, an optical delay interferometer (DI) is employed to narrow down the signal spectrum, thereby realizing 40-km single mode fiber (SMF) transmission in C-band. Besides, the chirp-induced spectral broadening of the directly modulated signal enables a higher launch power than external modulation schemes, which increases the loss budget of the system. As a result, 31-dB loss budget is achieved, supporting 64 users with 40-km reach. Also, as the transceivers in both optical line terminal (OLT) and optical network unit (ONU) are commercial l0-GHz devices, the proposed scheme is compatible with 40-Gb/s time and wavelength division multiplexing passive optical network (TWDM-PON) systems, providing a cost-efficient alternative for the development of 100G PON.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100-Gb/s TWDM-PON based on 10G optical devices

Zhengxuan Li, Lilin Yi, Honglin Ji, and Weisheng Hu
Opt. Express 24(12) 12941-12948 (2016)

Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system

Meihua Bi, Shilin Xiao, Hao He, Lilin Yi, Zhengxuan Li, Jun Li, Xuelin Yang, and Weisheng Hu
Opt. Express 21(14) 16528-16535 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON Stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
    [Crossref]
  2. L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB power budget,” IEEE Photonics Technol. Lett. 25(7), 644–647 (2013).
    [Crossref]
  3. S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
    [Crossref]
  4. H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30-km Downstream Transmission Using 4×25Gb/s 4-PAM modulation with commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC 2014, paper M2I.3.
  5. Y. Luo, B. Lin, H. Yang, J. Li, Y. He, Z. Chen, and Z. Li, “Symmetric 100-Gb/s TWDM-PON with DSB OFDM modulation,” in Proc. OFC 2014, paper W2A.61.
    [Crossref]
  6. Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
    [Crossref]
  7. D. van Veen, V. E. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON Transmission over 40-km using duobinary detection with a low cost 7-GHz APD-based receiver,” in Proc. ECOC 2012, paper Tu.3.B.1.
    [Crossref]
  8. Ł. Śliwczyński and P. Krehlik, “Increasing dispersion tolerance of 10Gbit/s directly modulated lasers using optical filtering,” Int. J. Electron. Commun. 64(5), 484–488 (2010).
    [Crossref]
  9. J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10Gbps directly modulated laser with demultiplexer filtering,” in Proc. LEOS 2004, paper ThE4.
  10. T. Ono, Y. Yano, and K. Fukuchi, “Demonstration of high-dispersion tolerance of 20-Gbit/s optical duobinary signal generated by a low-pass filtering method,” In Proc. OFC 1997, paper ThH1.
    [Crossref]
  11. K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
    [Crossref]
  12. Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a Symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [Invited],” J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
    [Crossref]
  13. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).
  14. Q. Guo and A. V. Tran, “Demonstration of a 40 Gb/s wavelength-reused WDM-PON using coding and equalization [Invited],” J. Opt. Commun. Netw. 5(10), A119–A126 (2013).
    [Crossref]
  15. L. Yi, X. Wang, Z. Li, J. Huang, J. Han, and W. Hu, “Upstream dispersion management supporting 100 km differential reach in TWDM-PON,” Opt. Express 23(6), 7971–7977 (2015).
    [Crossref] [PubMed]
  16. J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
    [Crossref]
  17. A. Adamiecki, M. Duelk, J. Sinsky, and M. Mandich, “Scalability of duobinary signaling to 25 Gb/s for 100 GbE applications.” IEEE 802.3ap working group presentation, November (2004).
  18. L. F. Suhr, J. J. Vegas Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s×4-lane duobinary-4-PAM for 400GBase,” in Proc. ECOC 2014, paper Tu.4.3.2.
  19. D. T. van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km wth 31 dB optical power budget using an APD-based receiver,” J. Lightwave Technol. 33(8), 1675–1680 (2015).
    [Crossref]
  20. J. Zhou, C. Yu, and H. Kim, “1.5-µm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.
  21. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
    [Crossref]
  22. H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
    [Crossref]
  23. M. Bi, S. Xiao, L. Yi, H. He, J. Li, X. Yang, and W. Hu, “Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system,” Opt. Express 22(6), 6925–6933 (2014).
    [Crossref] [PubMed]
  24. Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC 2014, paper Tu2C. 4.
    [Crossref]
  25. C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in European Conference on Optical Communication (ECOC, 2014), paper Tu 3.2.3.
    [Crossref]
  26. D. Zhang, D. Sun, Y. Dong, L. Yi, H. He, Y. Mou and W. Hu, “Amplifierless 40-km SMF transmission for 100GE based on 4× 25-Gbps optical duo-binary at 1550 nm,” in International Conference on Optical Communications and Networks (ICOCN, 2011), pp. 1–2.

2015 (4)

2014 (2)

2013 (3)

2011 (1)

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

2010 (1)

Ł. Śliwczyński and P. Krehlik, “Increasing dispersion tolerance of 10Gbit/s directly modulated lasers using optical filtering,” Int. J. Electron. Commun. 64(5), 484–488 (2010).
[Crossref]

2008 (1)

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

2006 (1)

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

2004 (1)

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

1995 (1)

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

Adamiecki, A. L.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Bi, M.

Bindhaiq, S.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Duelk, M.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Effenberger, F.

Elmagzoub, M. A.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Faisal, A.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Fan, Z. F.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Gnauck, A. H.

Guo, Q.

Guo, Y.

Han, J.

He, H.

Houtsma, V. E.

Hu, W.

Huang, J.

Iannone, P.

Jeong, J.

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

Jorge, F.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Kim, H.

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

J. Zhou, C. Yu, and H. Kim, “1.5-µm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Kim, Y.

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

Konczykowska, A.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Krehlik, P.

Ł. Śliwczyński and P. Krehlik, “Increasing dispersion tolerance of 10Gbit/s directly modulated lasers using optical filtering,” Int. J. Electron. Commun. 64(5), 484–488 (2010).
[Crossref]

Kuang, G.

Kuwano, S.

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

Lee, J.

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

Li, J.

Li, Z.

Liao, C.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Liu, X.

Luo, Y.

Ma, Y.

Mahgerefteh, D.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Matsui, Y.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

McCallion, K.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Mohammad, A. B.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Norimatsu, S.

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

Peng, G.

Qian, Y.

Shaddad, R. Q.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Shibata, N.

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

Sinsky, J. H.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Sliwczynski, L.

Ł. Śliwczyński and P. Krehlik, “Increasing dispersion tolerance of 10Gbit/s directly modulated lasers using optical filtering,” Int. J. Electron. Commun. 64(5), 484–488 (2010).
[Crossref]

Supa’at, A. S. M.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Tayebati, P.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Tran, A. V.

van Veen, D. T.

Wang, X.

Wei, W.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB power budget,” IEEE Photonics Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Xiao, S.

Yan, X.

Yang, X.

Yi, L.

Yin, Y.

Yonenaga, K.

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

Yu, C.

J. Zhou, C. Yu, and H. Kim, “1.5-µm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Zhang, D.

Zheng, X.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Zhou, J.

J. Zhou, C. Yu, and H. Kim, “1.5-µm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

Zhou, X.

Zhu, S.

Zulkifli, N.

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Electron. Lett. (1)

K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett. 31(4), 302–304 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB power budget,” IEEE Photonics Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Int. J. Electron. Commun. (1)

Ł. Śliwczyński and P. Krehlik, “Increasing dispersion tolerance of 10Gbit/s directly modulated lasers using optical filtering,” Int. J. Electron. Commun. 64(5), 484–488 (2010).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

J. Opt. Switch. Network (1)

S. Bindhaiq, A. S. M. Supa’at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub, and A. Faisal, “Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2),” J. Opt. Switch. Network 15, 53–66 (2015).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. Kim, J. Lee, Y. Kim, and J. Jeong, “Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator’s bandwidth or low-pass filter implemented by a single capacitor,” Opt. Fiber Technol. 10(4), 312–324 (2004).
[Crossref]

Other (11)

D. van Veen, V. E. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON Transmission over 40-km using duobinary detection with a low cost 7-GHz APD-based receiver,” in Proc. ECOC 2012, paper Tu.3.B.1.
[Crossref]

J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10Gbps directly modulated laser with demultiplexer filtering,” in Proc. LEOS 2004, paper ThE4.

T. Ono, Y. Yano, and K. Fukuchi, “Demonstration of high-dispersion tolerance of 20-Gbit/s optical duobinary signal generated by a low-pass filtering method,” In Proc. OFC 1997, paper ThH1.
[Crossref]

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30-km Downstream Transmission Using 4×25Gb/s 4-PAM modulation with commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC 2014, paper M2I.3.

Y. Luo, B. Lin, H. Yang, J. Li, Y. He, Z. Chen, and Z. Li, “Symmetric 100-Gb/s TWDM-PON with DSB OFDM modulation,” in Proc. OFC 2014, paper W2A.61.
[Crossref]

J. Zhou, C. Yu, and H. Kim, “1.5-µm, 10-Gbps 4-PAM VCSEL transmission for optical access networks,” in Proc. of International Conference on Optical Internet2014, paper FA2–3.

A. Adamiecki, M. Duelk, J. Sinsky, and M. Mandich, “Scalability of duobinary signaling to 25 Gb/s for 100 GbE applications.” IEEE 802.3ap working group presentation, November (2004).

L. F. Suhr, J. J. Vegas Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s×4-lane duobinary-4-PAM for 400GBase,” in Proc. ECOC 2014, paper Tu.4.3.2.

Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC 2014, paper Tu2C. 4.
[Crossref]

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in European Conference on Optical Communication (ECOC, 2014), paper Tu 3.2.3.
[Crossref]

D. Zhang, D. Sun, Y. Dong, L. Yi, H. He, Y. Mou and W. Hu, “Amplifierless 40-km SMF transmission for 100GE based on 4× 25-Gbps optical duo-binary at 1550 nm,” in International Conference on Optical Communications and Networks (ICOCN, 2011), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Frequency response and the corresponding eye diagram of the 10-GHz DML combined with the 10-GHz PIN
Fig. 2
Fig. 2 Proposed 100-Gb/s TWDM-PON system. CMD: chirp management device. PS: power splitter; TOF: tunable optical filter.
Fig. 3
Fig. 3 Experimental setup
Fig. 4
Fig. 4 Optical spectrum of the duobinary signal before and after chirp management
Fig. 5
Fig. 5 Eye diagrams measurment
Fig. 6
Fig. 6 Measured BER curve

Metrics