Abstract

The BP09 experiment conducted by the Centre for Maritime Research and Experimentation in the Ligurian Sea in March 2009 provided paired vertical profiles of nadir-viewing radiances Lu(z) and downward irradiances Ed(z) and inherent optical properties (IOPs, absorption, scattering and backscattering coefficients). An inversion algorithm was implemented to retrieve IOPs from apparent optical properties (AOPs, radiance reflectance RL, irradiance reflectance RE and diffuse attenuation coefficient Kd) derived from the radiometric measurements. Then another inversion algorithm was developed to infer vertical profiles of water constituent concentrations, including chlorophyll-a concentration, non-algal particle concentration, and colored dissolved organic matter from the retrieved IOPs based on a bio-optical model. The algorithm was tested on a synthetic dataset and found to give reliable results with an accuracy better than 1%. When the algorithm was applied to the BP09 dataset it was found that good retrievals of IOPs could be obtained for sufficiently deep waters, i.e. for Lu(z) and Ed(z) measurements conducted to depths of 50 m or more. This requirement needs to be satisfied in order to obtain a good estimation of the backscattering coefficient. For such radiometric measurements a correlation of 0.88, 0.96 and 0.93 was found between retrieved and measured absorption, scattering and backscattering coefficients, respectively. A comparison between water constituent values derived from the measured IOPs and in-situ measured values, yielded a correlation of 0.80, 0.78, and 0.73 for chlorophyll-a concentration, non-algal particle concentration, and absorption coefficient of colored dissolved organic matter at 443 nm, respectively. This comparison indicates that adjustments to the bio-optical model are needed in order to obtain a better match between inferred and measured water constituent values in the Ligurian Sea using the methodology developed in this paper.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Neural network method to correct bidirectional effects in water-leaving radiance

Yongzhen Fan, Wei Li, Kenneth J. Voss, Charles K. Gatebe, and Knut Stamnes
Appl. Opt. 55(1) 10-21 (2016)

Optical inversions of the water column based on glider measurements

Catherine Mitchell, Howard R. Gordon, Bruce Bowler, Dave Drapeau, and William M. Balch
Opt. Express 26(25) 32824-32838 (2018)

Ocean inherent optical property estimation from irradiances

Robert A. Leathers and Norman J. McCormick
Appl. Opt. 36(33) 8685-8698 (1997)

References

  • View by:
  • |
  • |
  • |

  1. H.R. Gordon and G.C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
    [Crossref] [PubMed]
  2. H.R. Gordon and G.C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
    [Crossref]
  3. V. Sanjuan Calzado, D. McKee, and C. Trees, “Multi and single cast radiometric processing and merging in the Ligurian Sea,” Optics of Natural Waters 2011Saint Petersburg, September 2011.
  4. J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
    [Crossref]
  5. D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
    [Crossref]
  6. R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
    [Crossref]
  7. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system,” Appl. Opt. 33, 431–442 (1994).
    [Crossref] [PubMed]
  8. G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd Edition (Cambridge University, 2002)
  9. B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
    [Crossref]
  10. B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.
  11. C.D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994)
  12. D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
    [Crossref]
  13. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters:II bi-directional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [Crossref] [PubMed]
  14. H.R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).
    [Crossref]
  15. G. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258 Ocean Optics XII, 194–201 (1994).
    [Crossref]
  16. C.D. Mobley, L.K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [Crossref] [PubMed]
  17. T.L. Petzold, “Volume scattering functions for selected ocean waters,” Technical Report SIO 7278 Scripps Institute of Oceanography, San Diego, Calif. (1972).
  18. W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
    [Crossref]
  19. Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
    [Crossref]
  20. K. Ruddick, “DUE Coastcolour Round Robin Protocol, version 1.2,” Coastalcolour Round Robin, Oct.2010.
  21. C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).
  22. D.S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Complex Systems 2, 321–355 (1988).
  23. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
    [Crossref]
  24. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
    [Crossref]
  25. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
    [Crossref] [PubMed]
  26. M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
    [Crossref]
  27. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
    [Crossref]
  28. A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
    [Crossref]
  29. F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).
  30. L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [Crossref]
  31. D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
    [Crossref]

2014 (1)

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

2013 (3)

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
[Crossref]

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

2009 (1)

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

2008 (1)

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

2003 (3)

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

2002 (2)

2000 (1)

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

1998 (3)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[Crossref]

H.R. Gordon and G.C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
[Crossref]

1997 (1)

1994 (3)

J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
[Crossref]

G. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258 Ocean Optics XII, 194–201 (1994).
[Crossref]

Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system,” Appl. Opt. 33, 431–442 (1994).
[Crossref] [PubMed]

1993 (1)

1989 (1)

H.R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).
[Crossref]

1988 (1)

D.S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Complex Systems 2, 321–355 (1988).

1941 (1)

L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Abreu, L. W.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Acharya, P.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Ampolo-Rella, M.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

Anderson, G.P.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Antoine, D.

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Baldridge, A.M.

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Berk, A.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Bernstein, L.S.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Boss, E.

Boynton, G.C.

Bricaud, A.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Broomhead, D.S.

D.S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Complex Systems 2, 321–355 (1988).

Chetwynd, J.H.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Claustre, H.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Clough, S.A.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Cunningham, A.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

Ferrari, G.M.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

Forand, J.L.

G. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258 Ocean Optics XII, 194–201 (1994).
[Crossref]

Fournier, G.

G. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258 Ocean Optics XII, 194–201 (1994).
[Crossref]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

Gallery, W.O.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Gentili, B.

Gibson, G.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Gordon, H.R.

Greenstein, J.L.

L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Griffiths, C.R.

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

Grove, C.I.

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hamre, B.

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.

Henyey, L.G.

L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Hoepffner, N.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

Hook, S.J.

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hu, Y.X.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Jin, Z.

Jones, K.J.

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

Kitchen, J.C.

J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
[Crossref]

Kneizys, F. X.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Li, W.

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

Lin, B.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Loisel, H.

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[Crossref]

Lowe, D.

D.S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Complex Systems 2, 321–355 (1988).

McKee, D.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
[Crossref]

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

V. Sanjuan Calzado, D. McKee, and C. Trees, “Multi and single cast radiometric processing and merging in the Ligurian Sea,” Optics of Natural Waters 2011Saint Petersburg, September 2011.

Mobley, C.D.

Moore, C.M.

J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
[Crossref]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref] [PubMed]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters:II bi-directional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[Crossref] [PubMed]

Neil, C.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

Neukermans, G.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

Obelesky, G.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

Petzold, T.L.

T.L. Petzold, “Volume scattering functions for selected ocean waters,” Technical Report SIO 7278 Scripps Institute of Oceanography, San Diego, Calif. (1972).

Piskozub, J.

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

Reynolds, R.

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

Rivera, G.

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Roberson, D.C.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Rodgers, C.

C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).

Rothman, L.S.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Röttgers, R.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
[Crossref]

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

Ruddick, K.

K. Ruddick, “DUE Coastcolour Round Robin Protocol, version 1.2,” Coastalcolour Round Robin, Oct.2010.

Sanjuan Calzado, V.

V. Sanjuan Calzado, D. McKee, and C. Trees, “Multi and single cast radiometric processing and merging in the Ligurian Sea,” Optics of Natural Waters 2011Saint Petersburg, September 2011.

SanjuanCalzado, V.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

Selby, J.E.A.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Shettle, E.P.

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

Slater, J.

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

Spurr, R.

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

Stamnes, J.J.

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.

Stamnes, K.

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system,” Appl. Opt. 33, 431–442 (1994).
[Crossref] [PubMed]

G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd Edition (Cambridge University, 2002)

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.

Stamnes, S.

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.

Stramski, A.D.

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

Stramski, D.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

Sundman, L.K.

Thomas, G.E.

G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd Edition (Cambridge University, 2002)

Trees, C.

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

V. Sanjuan Calzado, D. McKee, and C. Trees, “Multi and single cast radiometric processing and merging in the Ligurian Sea,” Optics of Natural Waters 2011Saint Petersburg, September 2011.

Tsay, S.C.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Wielicki, B.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Wong, T.

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Wozniak, S.B.

R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
[Crossref]

Zaneveld, J.R.V.

J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
[Crossref]

AIP Conference Proceedings (1)

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “C-DISORT: A versatile tool for radiative transfer in coupled media like the atmosphere-ocean system,” AIP Conference Proceedings 1531, 923 (2013).
[Crossref]

Appl. Opt. (6)

Astrophys. J. (1)

L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Complex Systems (1)

D.S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Complex Systems 2, 321–355 (1988).

Estuarine, Coastal and Shelf Science (1)

D. McKee, A. Cunningham, J. Slater, K.J. Jones, and C.R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine, Coastal and Shelf Science 56(2), 369–376 (2003).
[Crossref]

Int. J. Remote Sens. (1)

W. Li, K. Stamnes, R. Spurr, and J.J. Stamnes, “Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach II. SeaWiFS case study for the Santa Barbara channel”, Int. J. Remote Sens. 29, 5689–5698 (2008).
[Crossref]

J. Atmos. Ocean. Tech. (1)

D. McKee, J. Piskozub, R. Röttgers, and R. Reynolds, “Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements,” J. Atmos. Ocean. Tech. 30, 1527–1541 (2013).
[Crossref]

J. Geophys. Res. (2)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

M. Babin, A.D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obelesky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7):3211 (2003).
[Crossref]

J. Geophys. Res.-Oceans (1)

D. McKee, R. Röttgers, G. Neukermans, V. SanjuanCalzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.-Oceans 119, 9013–9025 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y.X. Hu, B. Wielicki, B. Lin, G. Gibson, S.C. Tsay, K. Stamnes, and T. Wong, “Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting,” J. Quant. Spectrosc. Radiat. Transf. 65, 681–690 (2000).
[Crossref]

Limnol. Oceanogr. (3)

H.R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,”Limnol. Oceanogr. 28, 843–859 (2003).
[Crossref]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[Crossref]

Methods in Oceanography (1)

R. Röttgers, D. McKee, and S.B. Woźniak, “Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters,” Methods in Oceanography 7, 21–39 (2013).
[Crossref]

Proc. SPIE (2)

G. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258 Ocean Optics XII, 194–201 (1994).
[Crossref]

J.R.V. Zaneveld, J.C. Kitchen, and C.M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258 Ocean Optics XII, 44–55 (1994).
[Crossref]

Remote Sens. Environ. (1)

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The ASTER Spectral Library Version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Other (8)

F. X. Kneizys, L. W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Roberson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, “The MODTRAN2/3 report and LOWTRAN 7 model,” Phillips Laboratory, Hanscom AFB (1996).

T.L. Petzold, “Volume scattering functions for selected ocean waters,” Technical Report SIO 7278 Scripps Institute of Oceanography, San Diego, Calif. (1972).

K. Ruddick, “DUE Coastcolour Round Robin Protocol, version 1.2,” Coastalcolour Round Robin, Oct.2010.

C. Rodgers, Inverse Methods for Atmospheric Sounding (World Scientific, 2000).

V. Sanjuan Calzado, D. McKee, and C. Trees, “Multi and single cast radiometric processing and merging in the Ligurian Sea,” Optics of Natural Waters 2011Saint Petersburg, September 2011.

G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd Edition (Cambridge University, 2002)

B. Hamre, S. Stamnes, K. Stamnes, and J.J. Stamnes, “A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system: Introducing AccuRT,” Ocean Optics XXII, Portland, ME, 26–31 Oct. 2014.

C.D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Location of 14 Lu(z), Ed(z), and IOP measurement conducted in the BP09 experiment used in this paper, see Table 1 for details.
Fig. 2
Fig. 2 Flow chart of the IOP inversion algorithm.
Fig. 3
Fig. 3 Rayleigh, Fournier-Forand and Petzold phase function used in this paper.
Fig. 4
Fig. 4 IOPs inverted from synthetic radiance reflectance RL(z) data at 488 nm. The upper panels show comparison between retrieved and synthetic IOPs, where filled circles (black) represent synthetic data, solid lines (blue) represent the inverted IOPs using the correct phase function (g = 0.9), and dashed lines(red) represent the inverted IOPs using incorrect phase function (g = 0.8). Note that when using correct phase function, the retrieved IOPs are so close to the synthetic data that the blue and black curves overlapped. The lower panels show the corresponding percentage errors.
Fig. 5
Fig. 5 Retrieved CHL, MIN and CDOM compared with model data for the synthetic dataset. The color of the dots shows the percentage error in the retrieved data.
Fig. 6
Fig. 6 Retrieved IOPs (red) of ST15 compared with in-situ measurements (blue). The top 6 panels, from left to right, show comparisons of the absorption coefficients at 412, 440, 488, 510, 532 and 555 nm, respectively, whereas the middle and bottom 6 panels show the same for the scattering and backscattering coefficients.
Fig. 7
Fig. 7 Retrieved IOPs (red) of ST28 compared with in-situ measurements (blue). The top 6 panels, from left to right, show comparisons of the absorption coefficients at 412, 440, 488, 510, 532 and 555 nm, respectively, whereas the middle and bottom 6 panels show the same for the scattering and backscattering coefficients.
Fig. 8
Fig. 8 Comparison between retrieved and measured IOPs that combined all depth, wavelengths and stations. The 3 panels, from left to right, show comparisons of absorption, scattering and backscattering coefficients, respectively. The color of the dots indicates wavelength as shown on the color bar.
Fig. 9
Fig. 9 Retrieved CHL, MIN and CDOM from in-situ measured IOPs compare with measured values for all stations.
Fig. 10
Fig. 10 Retrieved vertical profiles of CHL (green), MIN (blue) and CDOM (red). The solid lines are the water constituent profiles retrieved from in-situ measured IOPs, and the dashed lines are water constituent profiles retrieved from inverted IOPs. The filled circles are the in-situ measurements of CHL (green), MIN (blue) and CDOM (red).
Fig. 11
Fig. 11 Standard MODIS CHL a product of the Ligurian Sea area on 17 March 2009.
Fig. 12
Fig. 12 Absorption (left), scattering (middle) and backscattering coefficients (right) of CHL (green), MIN (blue) and CDOM (red), respectively.

Tables (3)

Tables Icon

Table 1 Time, location and mean ocean depth of the 14 measurements. The * symbol indicates the deep ocean cases tested in our IOP inversion algorithm.

Tables Icon

Table 2 Number of iterations (i) needed to invert the IOPs from Lu(z) and Ed(z) measurements and absolute percentage error (PE) of the radiance reflectances RL(z) for deep water cases.

Tables Icon

Table 3 Correlation and bias of retrieved IOPs for deep water cases.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

R L ( z ) L u ( z ) / E d ( z ) ,
μ d L ( τ , μ , ϕ ) d τ = L ( τ , μ , ϕ ) S * ( τ , μ , ϕ ) ϖ ( τ ) 4 π 0 2 π d ϕ 1 1 d μ p ( τ ; μ , ϕ ; μ , ϕ ) L ( τ , μ , ϕ )
E u ( τ ) = 2 π 0 1 d μ μ L ( τ , μ ) .
E d ( τ ) = 2 π 0 1 d μ μ L ( τ , μ ) .
E 0 ( τ ) = 2 π 1 1 d μ L ( τ , μ ) .
a ( z ) = μ ¯ ( z ) K v ( z )
b b ( z ) = a ( z ) X ( z )
X ( z ) = 3 { R E ( z ) d R E ( z ) d z z z max d z [ E d ( z ) E d ( z ) ] 2 }
b ( z ) = b b ( z ) b ˜ b ( z ) = b b ( z ) 2 π π / 2 π p ( cos Θ ) sin ( Θ ) d Θ
K d ( z ) d [ ln ( E d ( z ) ) ] / d z .
K d ( z ) 1.0395 a ( z ) + b b ( z ) cos ( θ w )
R L ( z ) 0.094 b b ( z ) a ( z ) .
a ( z ) K d ( z ) cos ( θ w ) 1.0395 [ R L ( z ) 0.094 + 1 ]
b b ( z ) K d ( z ) cos ( θ w ) 1.0395 [ 0.094 R L ( z ) + 1 ] .
p FF ( cos Θ ) = 1 4 π ( 1 δ ) 2 δ ν { ν ( 1 δ ) ( 1 δ ν ) + 4 u 2 [ δ ( 1 δ ν ) ν ( 1 δ ) ] } + 1 δ 180 ν 16 π ( δ 180 1 ) δ 180 ν [ 3 cos 2 Θ 1 ]
p w ( cos Θ ) = 3 3 + f ( 1 + f cos 2 Θ )
χ = f FF × χ , FF + f PET × χ , PET + ( 1 f FF f PET ) × χ , water
b ˜ bp ( z ) = b b ( z ) b b w ( z ) b ( z ) b w ( z )
b ˜ bp ( z ) = f FF ( z ) × 0.0056 + [ 1 f FF ( z ) ] × 0.021 .
f FF ( z ) = f FF ( z ) × b ˜ bp ( z ) b ˜ b ( z )
f PET ( z ) = [ 1 f FF ( z ) ] × b ˜ bp ( z ) b ˜ b ( z ) .
δ ( n ) = 1 N i = 1 N | ln [ E d ( n ) ( z i ) ] ln [ E d m ( z i ) ] | + 1 N i = 1 N | ln [ L u ( n ) ( z i ) ] ln [ L u m ( z i ) ] | .
δ R L ( n ) = 1 N i = 1 N | ln [ L u ( n ) ( z i ) E d ( n ) ( z i ) ] ln [ L u m ( z i ) E d m ( z i ) ] | .
IOP i = j = 1 N a i j exp [ b 2 k = 1 N in ( p k c j k ) 2 ] + d i
K i , k = ( IOP i ) p k = 2 b 2 ( p k c j k ) × j = 1 N a i j exp [ b 2 k = 1 N in ( p k c j k ) 2 ] .
x i + 1 = x i + [ ( 1 + γ i ) S a 1 + K i T S m 1 K i ] 1 × K i T S m 1 ( y m y i ) S a 1 ( x i x a )
a ( z ) = a 0 + a 1 exp [ ( z z a ) 2 2 σ a 2 ]
b b ( z ) = b b 0 + b b 1 exp [ ( z z b ) 2 2 σ b 2 ]
PE ( % ) = 1 N i = 1 N | R L R RTM R L measured | R L measured × 100
bias ( % ) = 1 N i = 1 N ( IOP inv . IOP in situ ) IOP in situ × 100
a pig ( λ ) = A ( λ ) × CHL E ( λ )
c pig ( 660 ) = 0.407 × CHL 0.795
c pig ( λ ) = c pig ( 660 ) × ( λ / 660 ) ν
ν = 0.5 × [ log 10 CHL 0.3 ] 0.02 < CHL < 2.0 ν = 0 , CHL > 2.0
b pig ( λ ) = c pig ( λ ) a pig ( λ ) .
a MIN ( 443 ) = 0.031 × MIN
a MIN ( λ ) = a MIN ( 443 ) exp [ 0.0213 ( λ 443 ) ] .
b MIN ( 555 ) = 0.51 × MIN
c MIN ( λ ) = c MIN ( 555 ) × ( λ / 555 ) 0.3749
c MIN ( 555 ) = a MIN ( 555 ) + b MIN ( 555 ) = 0.52 × MIN .
b MIN ( λ ) = c MIN ( λ ) a MIN ( λ ) .
a CDOM ( λ ) = CDOM × exp [ 0.0176 ( λ 443 ) ] .
a tot ( λ ) = a pig ( λ ) + a MIN ( λ ) + a CDOM ( λ )
b tot ( λ ) = b pig ( λ ) + b MIN ( λ )
b b tot ( λ ) = 0.0056 × b pig ( λ ) + 0.019 × b MIN ( λ ) .

Metrics