Abstract

This manuscript presents a study of the upconversion (UC) in barium yttrium fluoride (BaY2F8) single crystal doped with trivalent erbium ions (Er3+) under excitation of the 4I13/2 level at three different wavelengths: 1493 nm, 1524 nm and 1556 nm. The resulting UC emission at around 980 nm has been investigated and it has been found that a thickness optimization is required to reach high quantum yield values, otherwise limited by self-absorption losses. The highest external photoluminescence quantum yield (ePLQY) measured in this study was 12.1±1.2 % for a BaY2F8:30at%Er3+ sample of thickness 1.75±0.01 mm, while the highest internal photoluminescence quantum yield (iPLQY) of 14.6±1.5 % was measured in a BaY2F8:20at%Er3+ sample with a thickness of 0.49±0.01 mm. Both values were obtained under excitation at 1493 nm and an irradiance of 7.0±0.7 Wcm−2. The reported iPLQY and ePLQY values are among the highest achieved for monochromatic excitation. Finally, the losses due to self-absorption were estimated in order to evaluate the maximum iPLQY achievable by the upconverter material. The estimated iPLQY limit values were ∼19%, ∼25% and ∼30%, for 10%, 20% and 30% Er3+ doping level, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices

Alessandro Boccolini, Jose Marques-Hueso, and Bryce S. Richards
Opt. Lett. 39(10) 2904-2907 (2014)

Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices

Sean K. W. MacDougall, Aruna Ivaturi, Jose Marques-Hueso, Karl W. Krämer, and Bryce S. Richards
Opt. Express 20(S6) A879-A887 (2012)

Enhanced up-conversion for photovoltaics via concentrating integrated optics

Georgios E. Arnaoutakis, Jose Marques-Hueso, Aruna Ivaturi, Karl W. Krämer, Stefan Fischer, Jan Christoph Goldschmidt, and Bryce S. Richards
Opt. Express 22(S2) A452-A464 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
    [Crossref]
  2. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
    [Crossref] [PubMed]
  3. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
    [Crossref] [PubMed]
  4. Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
    [Crossref] [PubMed]
  5. H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
    [Crossref] [PubMed]
  6. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
    [Crossref] [PubMed]
  7. G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors”, Chem. Soc. Rev. 44(6), 1635–1652 (2015).
    [Crossref]
  8. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  9. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [Crossref]
  10. B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54(10), 2679–2684 (2007).
    [Crossref]
  11. C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
    [Crossref]
  12. R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
    [Crossref]
  13. S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
    [Crossref]
  14. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
    [Crossref]
  15. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
    [Crossref] [PubMed]
  16. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
    [Crossref]
  17. S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
    [Crossref]
  18. R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
    [Crossref]
  19. A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
    [Crossref]
  20. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
    [Crossref]
  21. A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
    [Crossref] [PubMed]
  22. J. E. McDonald, “Direct absorption of solar radiation by atmospheric water vapor,” J. Meteor. 17(3), 319–328 (1960).
    [Crossref]
  23. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref] [PubMed]
  24. B. C. Timothy, S. Gardner, and D. K. Cohen, “Measurement of 1-μ m diam beams,” Appl. Opt. 25(17), 2981–2983 (1986).
    [Crossref]
  25. A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
    [Crossref]
  26. T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
    [Crossref] [PubMed]
  27. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
    [Crossref] [PubMed]

2015 (2)

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors”, Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

2014 (6)

C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref] [PubMed]

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

2013 (4)

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

2012 (2)

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

2011 (2)

2010 (2)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

2007 (2)

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54(10), 2679–2684 (2007).
[Crossref]

2006 (1)

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

2005 (1)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

1986 (1)

1983 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

1960 (1)

J. E. McDonald, “Direct absorption of solar radiation by atmospheric water vapor,” J. Meteor. 17(3), 319–328 (1960).
[Crossref]

Abedin, K. S.

Ahn, T.-S.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Al-Kaysi, R. O.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

Bär, S.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Bardeen, C. J.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Batentschuk, M.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Boccolini, A.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref] [PubMed]

Brabec, C. J.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Butterworth, S.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Capobianco, J. A.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
[Crossref]

Chen, D.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Chen, X.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Cohen, D. K.

Conibeer, G. J.

C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
[Crossref]

Diening, A.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Dimarcello, F. V.

Favilla, E.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

Fini, J. M.

Fischer, S.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Fishteyn, M.

Froehlich, B.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Fröhlich, B.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Gardner, S.

Garetz, B. A.

Goldschmidt, J. C.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Goldschmidt, J.C.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Güdel, H. U.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Hermle, M.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Heumann, E.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Huber, G.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Ivaturi, A.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Johnson, C. M.

C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
[Crossref]

Jones, A. C.

Khosrofian, J. M.

Krämer, K. W.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Krämer, K.W.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Liu, G.

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors”, Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref]

Liu, X.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

MacDougall, S. K. W.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Marques-Hueso, J.

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref] [PubMed]

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Martín-Rodríguez, R.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

McDonald, J. E.

J. E. McDonald, “Direct absorption of solar radiation by atmospheric water vapor,” J. Meteor. 17(3), 319–328 (1960).
[Crossref]

Meijerink, A.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Monberg, E. M.

Moudam, O.

Müller, A. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Naccache, R.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
[Crossref]

Osvet, A.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Pinna, L.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Quintanilla, M.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Rademaker, K.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Richards, B. S.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β -NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54(10), 2679–2684 (2007).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Richards, B.S.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Robertson, N.

Rowan, B. C.

Seelert, W.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

Shalav, A.

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54(10), 2679–2684 (2007).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Steinkemper, H.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Taunay, T. F.

Timothy, B. C.

Tonelli, M.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Tu, D.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Vetrone, F.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
[Crossref]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Wang, H. Q.

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Wang, Y.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Wentz, K. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Wilson, L. R.

Wisk, P. W.

Woo, S.

C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
[Crossref]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Yan, M. F.

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Zhu, B.

Zhu, H.

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-Earth ion doped upconversion materials for photovoltaic applications,” Adv. Mater. 23(2223), 2675–2680 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductorlaser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88, 061108 (2006).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Chem Sus Chem (1)

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-doped upconverting nanoparticles: harvesting light for solar cells,” Chem Sus Chem 6(8), 1308–1311 (2013).
[Crossref]

Chem. Mater. (1)

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Krämer, J.C. Goldschmidt, B.S. Richards, and A. Meijerink, “Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors”, Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42(16), 6924–6958 (2013).
[Crossref] [PubMed]

IEEE J. Photovolt. (1)

C. M. Johnson, S. Woo, and G. J. Conibeer, “Limiting efficiency of erbium-based up-conversion for generalized realistic c-Si solar cells,” IEEE J. Photovolt. 4(3), 1–8 (2014).
[Crossref]

IEEE Trans. Electron Devices (1)

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54(10), 2679–2684 (2007).
[Crossref]

J. Appl. Phys. (3)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β -NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

J. Meteor. (1)

J. E. McDonald, “Direct absorption of solar radiation by atmospheric water vapor,” J. Meteor. 17(3), 319–328 (1960).
[Crossref]

J. Phys. Chem. C (1)

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, and B. S. Richards, “Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: correcting for absorption/re-emission,” Rev. Sci. Instrum. 85(6), 063109 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β -NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. S. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Two sub-bandgap photons are converted into a higher energy photon by an UC layer placed underneath a bifacial solar cell. The pump energy scheme within Er3+ ions of the 4I13/2 level shows how the UC process populates the 4I9/2 level and consequently to the lower 4I11/2 due to fast decay. The radiative decay to the ground state from this level leads to an emission characterized by two main peaks centered at 977 nm and 1005 nm, corresponding to photon energies just above the silicon bandgap Eg. The lifetimes values reported have been measured in our lab.
Fig. 2
Fig. 2 Experimental setups used for photoluminescence measurements, with (a) and without (b) integrating sphere.
Fig. 3
Fig. 3 Absorption coefficient spectra in the range 1400–1650 nm of the investigated Er3+ doped BaY2F8 crystals for doping levels of 10%, 20% and 30%. The green dot-dashed curve represents the 4I11/2 → 4I15/2 excitation spectrum in the range 1450–1590 nm (λemission = 977 nm) relative to a BaY2F8:20% Er3+ sample. All spectra have been measured at room temperature (296K).
Fig. 4
Fig. 4 Comparison of solar spectrum AM1.5D (yellow area) and a 1.73 mm thickness BaY2F8:30%Er3+ optical density (blue patterned area) in the range 1400–1650 nm. The dotted black line represents the total solar photons absorbed by the sample.
Fig. 5
Fig. 5 Comparison of emission spectrum (measured without integrating sphere) relative to the transition 4I11/24I15/2 measured under 1493 nm excitation of BaY2F8:20%Er3+ (black solid line) and ground state absorption spectrum of the same material (blue patterned area) in the range 950–1050 nm.
Fig. 6
Fig. 6 NIR photoluminescence spectra measured for 3 different excitations wavelengths: 1556 nm, 1524 nm and 1493 nm. Each subplot corresponds to a particular excitation wavelength and Er3+ doping level, and each one contains the emission spectra measured for different thicknesses (green-dotted for the thinner sample, blue-solid for the thicker, and red-dashed for the middle thickness, when present). All spectra have been measured using the integrating sphere setup.
Fig. 7
Fig. 7 Normalized NIR photoluminescence spectra measured for 3 different excitations wavelengths: 1556 nm, 1524 nm and 1493 nm. Each subplot corresponds to a particular excitation wavelength and Er3+ doping level, and each one contains the normalized emission spectra measured for different thicknesses (green-dotted for the thinner sample, blue-solid for the thicker, and red-dashed for the middle thickness, when present).
Fig. 8
Fig. 8 Estimated losses due to self-absorption comparing the integrated emission spectra measured in the integrating sphere (black solid line and white area) and without integrating sphere (black dash line and red area). The losses and the iPLQY limit estimation refer to the highest iPLQY samples investigated: BaY2F8:10%Er (1.05 mm), BaY2F8:20%Er (0.49 mm) and BaY2F8:30%Er (1.76 mm).

Tables (2)

Tables Icon

Table 1 Absorption coefficients relative to three different Er3+ concentration and at different wavelengths.

Tables Icon

Table 2 ePLQY and iPLQY (in brackets) values measured for all investigated samples and corresponding to 3 different excitation wavelenghts: 1556 nm, 1524 nm and 1493 nm. All measures are affected by a relative error of 10%. The highest ePLQY and iPLQY values are highlighted in bold.

Metrics