Abstract

This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system

Ming-Hui Tan, Kok-Keong Chong, and Chee-Woon Wong
Appl. Opt. 53(3) 475-486 (2014)

Optical analysis of deviations in a concentrating photovoltaics central receiver system with a flux homogenizer

Henning Helmers, Wei Yi Thor, Thomas Schmidt, De Wet van Rooyen, and Andreas W. Bett
Appl. Opt. 52(13) 2974-2984 (2013)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
    [Crossref]
  2. V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.
  3. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
    [Crossref]
  4. P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
    [Crossref]
  5. F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
    [Crossref]
  6. T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
    [Crossref]
  7. D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68(3), 263–283 (2000).
    [Crossref]
  8. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
    [Crossref]
  9. K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
    [Crossref]
  10. K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
    [Crossref]
  11. M.-H. Tan, K.-K. Chong, and C.-W. Wong, “Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system,” Appl. Opt. 53(3), 475–486 (2014).
    [Crossref] [PubMed]
  12. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application 13/901,519 (filed on May 23, 2013, pending).
  13. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May 31, 2012, pending).
  14. K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
    [Crossref]
  15. G. Johnston, “On the analysis of surface error distributions on concentrated solar collectors,” J. Sol. Energy Eng. 117(4), 294–296 (1995).
    [Crossref]
  16. G. Johnston and M. Shortis, “Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessment of surfaces,” J. Sol. Energy Eng. 119(4), 286–291 (1997).
    [Crossref]
  17. K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
    [Crossref]
  18. T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
    [Crossref]
  19. D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
    [Crossref]
  20. D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
    [Crossref]
  21. J. E. Noring, D. F. Grether, and A. J. Hunt, “Circumsolar radiation data: the Lawrence Berkeley Laboratory reduced data base” In: National Renewable Energy Laboratory. NREL/TP-262–4429. (1991). http://rredc.nrel.gov/solar/pubs/circumsolar/title.html
  22. K. K. Chong and C. W. Wong, “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Sol. Energy 83(3), 298–305 (2009).
    [Crossref]
  23. Y. Liu, J. M. Dai, X. G. Sun, and T. H. Yu, “Factors influencing flux distribution on focal region of parabolic concentrators,” in Proceeding of International Symposium on Instrumentation Science and Technology (IOP Science, 2006), pp. 59–63.
    [Crossref]
  24. http://www.spectrolab.com/DataSheets/PV/CPV/C3MJ_Dense_Array.pdf
  25. F. L. Siaw and K. K. Chong, “Temperature effects on the performance of dense-array concentrator photovoltaic system,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE, 2012), pp. 140–144.
    [Crossref]
  26. K. K. Chong and F. L. Siaw, “Electrical characterization of dense array concentrator photovoltaic system,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference (EU PVSEC, 2012), pp. 224–227.
  27. F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
    [Crossref]
  28. A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
    [Crossref]
  29. R. R. King, D. Bhusari, A. Boca, D. Larrabee, X.-Q. Liu, W. Hong, C. M. Fetzer, D. C. Law, and N. H. Karam, “Band gap-voltage offset and energy production in next-generation multijunction solar cells,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (EU PVSEC, 2011), pp. 797–812.
    [Crossref]

2015 (1)

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

2014 (2)

M.-H. Tan, K.-K. Chong, and C.-W. Wong, “Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system,” Appl. Opt. 53(3), 475–486 (2014).
[Crossref] [PubMed]

F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
[Crossref]

2013 (2)

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

2012 (1)

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

2011 (1)

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

2010 (1)

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

2009 (2)

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

K. K. Chong and C. W. Wong, “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Sol. Energy 83(3), 298–305 (2009).
[Crossref]

2006 (2)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

2005 (1)

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

2003 (2)

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
[Crossref]

2000 (1)

D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68(3), 263–283 (2000).
[Crossref]

1997 (1)

G. Johnston and M. Shortis, “Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessment of surfaces,” J. Sol. Energy Eng. 119(4), 286–291 (1997).
[Crossref]

1995 (1)

G. Johnston, “On the analysis of surface error distributions on concentrated solar collectors,” J. Sol. Energy Eng. 117(4), 294–296 (1995).
[Crossref]

Agui, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Ambrosetti, G.

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Andreev, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Batista, F.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Bingham, C.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Boca, A.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Bosi, S.

D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
[Crossref]

Brito, M. C.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Buie, D.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
[Crossref]

Cadruvi, M.

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Chemisana, D.

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

Chong, K. K.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

K. K. Chong and C. W. Wong, “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Sol. Energy 83(3), 298–305 (2009).
[Crossref]

F. L. Siaw and K. K. Chong, “Temperature effects on the performance of dense-array concentrator photovoltaic system,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE, 2012), pp. 140–144.
[Crossref]

Chong, K.-K.

F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
[Crossref]

M.-H. Tan, K.-K. Chong, and C.-W. Wong, “Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system,” Appl. Opt. 53(3), 475–486 (2014).
[Crossref] [PubMed]

Cooper, T.

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Dey, C. J.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
[Crossref]

Dollet, A.

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

Edmondson, K.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Fetzer, C.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Flamant, G.

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

Fuyuki, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Grilikhes, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Guerreiro, C.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Haddad, M.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Hong, W.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Johnston, G.

G. Johnston and M. Shortis, “Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessment of surfaces,” J. Sol. Energy Eng. 119(4), 286–291 (1997).
[Crossref]

G. Johnston, “On the analysis of surface error distributions on concentrated solar collectors,” J. Sol. Energy Eng. 117(4), 294–296 (1995).
[Crossref]

Johnston, G. H.

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

Kaneiwa, M.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Karam, N.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Kim, J.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

King, R. R.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Kinsey, G.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Kinsey, G. S.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Lasich, J. B.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Lau, S. L.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Law, D.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Lewandowski, A.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Lupfert, E.

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

Marz, T.

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Mills, D. R.

D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68(3), 263–283 (2000).
[Crossref]

Monger, A. G.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Morrison, G. L.

D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68(3), 263–283 (2000).
[Crossref]

Nishioka, K.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Park, K. M.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Pien, P.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Pimentel, T.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Pottler, K.

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

Prahl, C.

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Pravettoni, M.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Reis, F.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Rhee, J. G.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Rumyantsev, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Ryu, K.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Sherif, R. A.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Shortis, M.

G. Johnston and M. Shortis, “Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessment of surfaces,” J. Sol. Energy Eng. 119(4), 286–291 (1997).
[Crossref]

Shortis, M. R.

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

Shvarts, M.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Siaw, F. L.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

F. L. Siaw and K. K. Chong, “Temperature effects on the performance of dense-array concentrator photovoltaic system,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE, 2012), pp. 140–144.
[Crossref]

Siaw, F.-L.

F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
[Crossref]

Sorasio, G.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Steinfeld, A.

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Takamoto, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Tan, M.-H.

Tan, P. C. L.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Timoshina, N.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Ulmer, S.

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Uraoka, Y.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

Verlinden, P. J.

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

Vossier, A.

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

Weber, C.

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Wemans, J.

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

Wilbert, S.

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Wong, C. W.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

K. K. Chong and C. W. Wong, “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Sol. Energy 83(3), 298–305 (2009).
[Crossref]

Wong, C.-W.

F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
[Crossref]

M.-H. Tan, K.-K. Chong, and C.-W. Wong, “Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system,” Appl. Opt. 53(3), 475–486 (2014).
[Crossref] [PubMed]

Wong, G. S.

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

Yew, T. K.

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

Yoon, H.

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

Appl. Opt. (1)

IEEE Journal of Photovoltaics (1)

F. Reis, C. Guerreiro, F. Batista, T. Pimentel, M. Pravettoni, J. Wemans, G. Sorasio, and M. C. Brito, “Modeling the effects of inhomogeneous irradiation and temperature profile on CPV solar cell behavior,” IEEE Journal of Photovoltaics 5(1), 112–122 (2015).
[Crossref]

J. Sol. Energy Eng. (5)

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of non-imaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132(1), 011011 (2010).
[Crossref]

G. Johnston, “On the analysis of surface error distributions on concentrated solar collectors,” J. Sol. Energy Eng. 117(4), 294–296 (1995).
[Crossref]

G. Johnston and M. Shortis, “Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessment of surfaces,” J. Sol. Energy Eng. 119(4), 286–291 (1997).
[Crossref]

K. Pottler, E. Lupfert, G. H. Johnston, and M. R. Shortis, “Photogrammetry: a powerful tool for geometric analysis of solar concentrators and their components,” J. Sol. Energy Eng. 127(1), 94–101 (2005).
[Crossref]

T. Marz, C. Prahl, S. Ulmer, S. Wilbert, and C. Weber, “Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems,” J. Sol. Energy Eng. 133(3), 031022 (2011).
[Crossref]

Renew. Energy (3)

F.-L. Siaw, K.-K. Chong, and C.-W. Wong, “A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator,” Renew. Energy 62, 542–555 (2014).
[Crossref]

A. Vossier, D. Chemisana, G. Flamant, and A. Dollet, “Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modeling,” Renew. Energy 38(1), 31–39 (2012).
[Crossref]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34(5), 1364–1370 (2009).
[Crossref]

Renew. Sustain. Energy Rev. (1)

K. K. Chong, S. L. Lau, T. K. Yew, and P. C. L. Tan, “Design and development in optics of concentrator photovoltaic system,” Renew. Sustain. Energy Rev. 19, 598–612 (2013).
[Crossref]

Sol. Energy (5)

D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68(3), 263–283 (2000).
[Crossref]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

D. Buie, C. J. Dey, and S. Bosi, “The effective size of the solar cone for solar concentrating systems,” Sol. Energy 74(5), 417–427 (2003).
[Crossref]

K. K. Chong and C. W. Wong, “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Sol. Energy 83(3), 298–305 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-ffficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006).
[Crossref]

T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013).
[Crossref]

Other (11)

P. J. Verlinden, A. Lewandowski, C. Bingham, G. S. Kinsey, R. A. Sherif, and J. B. Lasich, “Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications,” in Proceeding of the IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 592–597.
[Crossref]

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application 13/901,519 (filed on May 23, 2013, pending).

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May 31, 2012, pending).

R. R. King, D. Bhusari, A. Boca, D. Larrabee, X.-Q. Liu, W. Hong, C. M. Fetzer, D. C. Law, and N. H. Karam, “Band gap-voltage offset and energy production in next-generation multijunction solar cells,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (EU PVSEC, 2011), pp. 797–812.
[Crossref]

R. R. King, A. Boca, W. Hong, D. Law, G. Kinsey, C. Fetzer, M. Haddad, K. Edmondson, H. Yoon, P. Pien, and N. Karam, “High-efficiency multijunction photovoltaics for low-cost solar electricity,” in Proceeding of 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (IEEE, 2008), pp. 2–3.
[Crossref]

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of nonuniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Proceeding of 3rd World Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 881–884.

Y. Liu, J. M. Dai, X. G. Sun, and T. H. Yu, “Factors influencing flux distribution on focal region of parabolic concentrators,” in Proceeding of International Symposium on Instrumentation Science and Technology (IOP Science, 2006), pp. 59–63.
[Crossref]

http://www.spectrolab.com/DataSheets/PV/CPV/C3MJ_Dense_Array.pdf

F. L. Siaw and K. K. Chong, “Temperature effects on the performance of dense-array concentrator photovoltaic system,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (IEEE, 2012), pp. 140–144.
[Crossref]

K. K. Chong and F. L. Siaw, “Electrical characterization of dense array concentrator photovoltaic system,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference (EU PVSEC, 2012), pp. 224–227.

J. E. Noring, D. F. Grether, and A. J. Hunt, “Circumsolar radiation data: the Lawrence Berkeley Laboratory reduced data base” In: National Renewable Energy Laboratory. NREL/TP-262–4429. (1991). http://rredc.nrel.gov/solar/pubs/circumsolar/title.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The prototype of non-imaging dish concentrator (NIDC).
Fig. 2
Fig. 2 Schematic diagram to show how all the mirrors are gradually lifted from central to peripheral regions of the non-imaging dish concentrator to prevent shadowing and blocking among adjacent mirrors.
Fig. 3
Fig. 3 Cartesian coordinate system is used to represent the main coordinate system (x, y, z) attached to the plane of the dish concentrator and the sub-coordinate system (x′, y′, z′) is defined attached to the i, j-mirror.
Fig. 4
Fig. 4 Schematic diagram to show how a mirror surface with slope error can cause the reflected ray to be deviated from the specular reflection direction.
Fig. 5
Fig. 5 The simulated results of solar flux distribution produced by non-imaging dish concentrator in 2-D and 3-D mesh plots with CSR = 0 and δ = 0.
Fig. 6
Fig. 6 The simulated results to show the influence of both circumsolar ratio (CSR) and slope error (δ) to the solar flux distribution of NIDC with 96 facet mirrors and a focal distance of 210 cm.
Fig. 7
Fig. 7 Spillage loss (with marker) and its corresponding lowest solar concentration ratio at receiver edge (without marker) versus receiver size (square in shape) for five different values of δ, i.e. 0 mrad, 1 mrad, 2 mrad, 3 mrad and 4 mrad, are plotted in the case of CSR = 0.
Fig. 8
Fig. 8 Spillage loss (with marker) and its corresponding lowest solar concentration ratio at receiver edge (without marker) versus receiver size (square in shape) for five different values of CSR, i.e. 0, 0.1, 0.2, 0.3 and 0.4, are plotted in the case of δ = 0 mrad.
Fig. 9
Fig. 9 The spillage loss of receiver with a dimension of 25 cm × 25 cm.
Fig. 10
Fig. 10 Schematic diagram to show the average solar concentration ratio mapped to each solar cell at its respective position on the receiver plane based on the simulated solar flux distribution with a total dimension of 25.5 cm × 24.0 cm.
Fig. 11
Fig. 11 Flow chart to show the algorithm on how to optimize the electrical interconnection of dense array solar cells in DACPV module.
Fig. 12
Fig. 12 Schematic diagram to show five different optimal configurations for δ ranging from 0 to 4 mrad. Optimal configuration I, II, III, IV and V are the most optimized layout of solar cells interconnection circuits, which are designed based on the simulated flux distribution with slope error at 0, 1 mrad, 2 mrad, 3 mrad and 4 mrad respectively in the case of CSR = 0.
Fig. 13
Fig. 13 Bar chart to show the power losses in percentage for five different optimal configurations with CSR ranging from 0 to 0.4, and δ ranging from 0 to 4 mrad.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

θ r = ( 2 δ 2 )ln( 1 r θ ) 0 r θ 1
φ= 2 π r φ 0 r φ 1
[ N ] ijkl = [ γ ] ij [ σ ] ij [ φ ] ijkl [ θ r ] ijkl [ N ] ijkl [ N x N y N z 1 ] ijkl = [ 1 0 0 0 0 cosγ sinγ 0 0 sinγ cosγ 0 0 0 0 1 ] ij × [ cosσ 0 sinσ 0 0 1 0 0 sinσ 0 cosσ 0 0 0 0 1 ] ij × [ cosφ sinφ 0 0 sinφ cosφ 0 0 0 0 1 0 0 0 0 1 ] ijkl × [ 1 0 0 0 0 cos θ r sin θ r 0 0 sin θ r cos θ r 0 0 0 0 1 ] ijkl × [ N x N y N z 1 ] ijkl
[ R x R y R z ]=[ 2( I x N x ' + I y N y ' + I z N z ' ) N x ' I x 2( I x N x ' + I y N y ' + I z N z ' ) N y ' I y 2( I x N x ' + I y N y ' + I z N z ' ) N z ' I z ]
[ T x T y T z ]=[ R mx R mz ( f H z )+ H x R my R mz ( f H z )+ H y f ]
ϕ( θ i )={ cos(0.326 θ i ) cos(0.308 θ i ) 0 θ i θ sun e κ θ i γ θ sun θ i 43.6
C= n=1 N ( area of reflective point (cm 2 ) area of receiver pixel (cm 2 ) ×ϕ( θ i )× cosθ i=1 P ϕ( θ i ) )
I SC = I SC 1 C
V OC V OC 1 +N kT q lnC
Power loss= P elec P elecmax ×100 %

Metrics