Abstract

Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing light absorption within the carrier transport length in quantum junction solar cells

Yulan Fu, Yukihiro Hara, Christopher W. Miller, and Rene Lopez
Appl. Opt. 54(26) 7933-7939 (2015)

Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference

Ebuka S. Arinze, Botong Qiu, Nathan Palmquist, Yan Cheng, Yida Lin, Gabrielle Nyirjesy, Gary Qian, and Susanna M. Thon
Opt. Express 25(4) A101-A112 (2017)

Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
    [Crossref] [PubMed]
  2. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
    [Crossref]
  3. A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
    [Crossref]
  4. P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
    [Crossref] [PubMed]
  5. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
    [Crossref] [PubMed]
  6. Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
    [Crossref] [PubMed]
  7. C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
    [Crossref] [PubMed]
  8. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
    [Crossref] [PubMed]
  9. D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
    [Crossref] [PubMed]
  10. K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
    [Crossref] [PubMed]
  11. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
    [Crossref] [PubMed]
  12. W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
    [Crossref]
  13. S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
    [Crossref]
  14. R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
    [Crossref]
  15. M. S. Lundstrom and R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev.30(9), 1151–1159 (1983).
    [Crossref]
  16. K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
    [Crossref]
  17. M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
    [Crossref] [PubMed]
  18. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
    [Crossref]
  19. J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
    [Crossref] [PubMed]
  20. A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
    [Crossref]
  21. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
    [Crossref]
  22. Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
    [Crossref]
  23. A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
    [Crossref] [PubMed]

2015 (1)

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

2014 (3)

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

2013 (6)

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

2012 (4)

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

2010 (1)

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

2008 (1)

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

1993 (1)

K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
[Crossref]

1990 (1)

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
[Crossref]

1989 (1)

R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
[Crossref]

1988 (1)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

1987 (1)

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

1983 (1)

M. S. Lundstrom and R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev.30(9), 1151–1159 (1983).
[Crossref]

1970 (1)

W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
[Crossref]

Adachi, M. M.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

Adinolfi, V.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

Amassian, A.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Aryal, M.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Asbury, J. B.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Ballif, C.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Bandyopadhyay, S.

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

Barkhouse, A. R.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Barkhouse, D. A. R.

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Barraud, L.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Bawendi, M. G.

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
[Crossref]

Boardman, A. D.

W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
[Crossref]

Brown, P. R.

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

Brus, L. E.

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
[Crossref]

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

Brzozowski, L.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Bulovic, V.

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

Carey, G. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Chou, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Chuang, C.-H. M.

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

Churchill, J.

R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
[Crossref]

Datta, S.

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

De Wolf, S.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Debnath, R.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Descoeudres, A.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Dong, H.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

East, J. R.

K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
[Crossref]

Farahani, M.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

Fawcett, W.

W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
[Crossref]

Fischer, A.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Fratalocchi, A.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

Furukawa, M.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Gadisa, A.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Gokmen, T.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Grätzel, M.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Gunawan, O.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Haddad, G. I.

K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
[Crossref]

Harris, A. L.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

Hinds, S.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Holman, Z. C.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Hoogland, S.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Ip, A. H.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Jeong, K. S.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Kemp, K.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Kemp, K. W.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Kim, J.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

Kirmani, A. R.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Kirsch, C.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Klausmeier-Brown, M. E.

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

Koleilat, G. I.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Konstantatos, G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Kramer, I. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Labelle, A. J.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Lan, X.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

Lee, A.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Levina, L.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Levinos, N. J.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

Liu, H.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Lopez, R.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Lundstrom, M. S.

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

M. S. Lundstrom and R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev.30(9), 1151–1159 (1983).
[Crossref]

Maraghechi, P.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Masala, S.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

Maziar, C. M.

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

Mitran, S.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Mitzi, D. B.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Morel, S.

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

Myrskog, S. H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Nazeeruddin, M. K.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Ning, Z.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Raabe, I.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Ren, Y.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Rollny, L. R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Samulski, E. T.

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Sargent, E. H.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Schaefer, A. W.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

Schuelke, R. J.

M. S. Lundstrom and R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev.30(9), 1151–1159 (1983).
[Crossref]

Shukla, H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Steigerwald, M. L.

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
[Crossref]

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

Stewart, R.

R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
[Crossref]

Sutherland, B.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Swain, S.

W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
[Crossref]

Tang, J.

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Thon, S. M.

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Todorov, T. K.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Voznyy, O.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

Wang, X.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

Winkler, M. T.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

Xu, J.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Yang, K.

K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
[Crossref]

Ye, L.

R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
[Crossref]

Zhitomirsky, D.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Zhu, Y.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

ACS Nano (4)

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano7(7), 6111–6116 (2013).
[Crossref] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010).
[Crossref] [PubMed]

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang, S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury, “Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics,” ACS Nano6(1), 89–99 (2012).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano2(5), 833–840 (2008).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater.4(7), 1301465 (2014).
[Crossref]

Adv. Mater. (2)

J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, “25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances,” Adv. Mater.25(36), 4986–5010 (2013).
[Crossref] [PubMed]

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent, “Graded doping for enhanced colloidal quantum dot photovoltaics,” Adv. Mater.25(12), 1719–1723 (2013).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductorclusters (“quantum dots”),” Annu. Rev. Phys. Chem.41(1), 477–496 (1990).
[Crossref]

IEEE J. Photovoltaics (1)

A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics3(1), 83–89 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (2)

S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S. Datta, and M. S. Lundstrom, “A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation,” IEEE Trans. Electron. Dev.34(2), 392–399 (1987).
[Crossref]

M. S. Lundstrom and R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev.30(9), 1151–1159 (1983).
[Crossref]

J. Chem. Phys. (1)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[Crossref]

J. Phys. Chem. Solids (1)

W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Solids31(9), 1963–1990 (1970).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Liu, C. Kirsch, A. Gadisa, M. Aryal, S. Mitran, E. T. Samulski, and R. Lopez, “Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices,” J. Phys. D Appl. Phys.46(2), 024008 (2013).
[Crossref]

Nano Lett. (2)

A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, “Colloidal quantum dot solar cells exploiting hierarchical structuring,” Nano Lett.15(2), 1101–1108 (2015).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum junction solar cells,” Nano Lett.12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, “Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime,” Nat. Commun.5, 3803 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater.13(8), 796–801 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl.20(1), 6–11 (2012).
[Crossref]

Sci. Rep. (1)

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep.3, 2928 (2013).
[Crossref] [PubMed]

Solid-State Electron. (2)

K. Yang, J. R. East, and G. I. Haddad, “Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition,” Solid-State Electron.36(3), 321–330 (1993).
[Crossref]

R. Stewart, L. Ye, and J. Churchill, “Improved relaxation-time formulation of collision terms for two-band hydrodynamic models,” Solid-State Electron.32(6), 497–502 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simulation results in flat PbS solar cells: (a) The schematic diagram of the flat solar cells. (b) The absorption spectra of PbS layers in the flat devices with 340 nm and 600 nm PbS films. (c) J-V curves of 340 nm and 600 nm PbS solar cell devices. (d) J sc and PCE, (e) V oc and FF as a function of PbS thickness.

Fig. 2
Fig. 2

(a) Simulated electric field intensity as a function of position within the PbS layer at the short-circuit condition and Mpp condition. (b) Electric field at the Mpp condition in the flat devices with 200 nm and 600 nm PbS films.

Fig. 3
Fig. 3

(a) The schematic diagram of the patterned solar cells. (b) The absorption spectra of the PbS layer and that of the whole device with 2 ¦Ìm grating height. (c) Generation rate per unit area as a function of effective PbS thickness in patterned and flat devices. (d) and (e) Optical absorption in patterned and flat devices with 388 nm effective thickness.

Fig. 4
Fig. 4

Simulation results in grating PbS solar cells: (a) J-V curve of a 2 μm high grating PbS solar cell device. (b) J sc and PCE, (c) V oc and FF as a function of grating height. (c) and (d) Electric field at the Mpp condition in the patterned devices with 400 nm and 2000 nm heights. Notice slightly larger numbers for the scale in the grating structure.

Fig. 5
Fig. 5

Plots of (a) J sc and PCE, (b) V oc and FF as a function of PbS thickness in grating PbS solar cells.

Fig. 6
Fig. 6

Plots of J sc and PCE as a function of (a) TiO2 thickness, (b) patterned ITO thickness, and (c) grating pitch.

Fig. 7
Fig. 7

(a) Real and (b) imaginary parts of the refractive index of each layer in the solar cell device. The imaginary parts of TiO2 and glass indexes are too low to be shown here, and can be considered transparent.

Fig. 8
Fig. 8

Simulated electric field intensity as a function of position within the PbS layer at the short-circuit condition in the devices with different n-type doping TiO2.

Fig. 9
Fig. 9

Absorption in PbS layers of the patterned devices with different materials in the core of the grating.

Fig. 10
Fig. 10

Absorption in different layers of the (a) flat and (b) patterned devices.

Tables (2)

Tables Icon

Table 1 Parameters employed in simulations of PbS solar cells.

Tables Icon

Table 2 Optimized Geometry Parameters of Patterned PbS solar cells (nm).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L D = K B T q μ τ .
g ( x , y , λ ) = α P ( x , y , λ ) λ / h c ,
2 Φ = q ε 0 ε r ( n p N ) .
[ D n n + n μ n ( Φ + χ q + K B T q ln N c ) ] = G ( x , y ) R ,
[ D p p p μ p ( Φ + χ q + E g q K B T q ln N v ) ] = G ( x , y ) R ,
R s r h = n p n i 2 τ n ( p + p t ) + τ p ( n + n t ) ,
Φ 0 = χ 2 χ 1 + 1 q [ E g 2 K B T ln ( N c 1 N v 2 N d N a ) ] ,
Φ n = Φ 0 ε p N a ε p N a + ε n N d ,
Φ p = - Φ 0 ε n N d ε n N d + ε p N a ,
n 0 = N d exp [ q ( Φ - Φ n ) K B T ] ,
p 0 = N a exp [ - q ( Φ - Φ p ) K B T ] .
n p = n i 2 .
n i n i t - p i n i t -N = 0.
p i n i t = n i 2 + N 2 / 4 N / 2 ,
n i n i t = n i 2 + N 2 / 4 + N / 2.

Metrics