Abstract

In this study we report novel silicon nanowire (SiNW) array structures that have near-unity absorption spectrum. The design of the new SiNW arrays is based on radial diversity of nanowires with periodic diamond-like array (DLA) structures. Different array structures are studied with a focus on two array structures: limited and broad diversity DLA structures. Numerical electromagnetic modeling is used to study the light-array interaction and to compute the optical properties of SiNW arrays. The proposed arrays show superior performance over other types of SiNW arrays. Significant enhancement of the array absorption is achieved over the entire solar spectrum of interest with significant reduction of the amount of material. The arrays show performance independent of angle of incidence up to 70 degrees, and polarization. The proposed arrays achieved ultimate efficiency as high as 39% with filling fraction as low as 19%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications

Yonggang Wu, Zihuan Xia, Zhaoming Liang, Jian Zhou, Hongfei Jiao, Hong Cao, and Xuefei Qin
Opt. Express 22(S5) A1292-A1302 (2014)

Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications

Chenxi Lin and Michelle L. Povinelli
Opt. Express 17(22) 19371-19381 (2009)

Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation

Katherine T. Fountaine, Christian G. Kendall, and Harry A. Atwater
Opt. Express 22(S3) A930-A940 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
    [Crossref] [PubMed]
  2. H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
    [Crossref]
  3. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
    [Crossref]
  4. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
    [Crossref]
  5. Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
    [Crossref] [PubMed]
  6. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett.36(10), 1884–1886 (2011).
    [Crossref] [PubMed]
  7. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett.35(20), 3378–3380 (2010).
    [Crossref] [PubMed]
  8. R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
    [Crossref]
  9. J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
    [Crossref] [PubMed]
  10. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
    [Crossref] [PubMed]
  11. F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
    [Crossref] [PubMed]
  12. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
    [Crossref] [PubMed]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic,1985).
  14. I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
    [Crossref]
  15. K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
    [Crossref]
  16. M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
    [Crossref] [PubMed]
  17. O. H. Alzoubi and H. Naseem, “Broad band absorption silicon nanowire array using diverse radii for photovoltaic applications,” in Proceedings of IEEE Conference on Photovoltaic Specialist Conference (PVSC) (IEEE 40th, 2014), pp. 2197–2201.
    [Crossref]
  18. O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
    [Crossref]
  19. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011).
    [Crossref] [PubMed]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 2012), Chap. 9.

2014 (5)

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
[Crossref] [PubMed]

R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
[Crossref]

F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
[Crossref] [PubMed]

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
[Crossref]

2013 (1)

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

2012 (2)

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

2008 (2)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

2002 (1)

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

Abedzadeh, N.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

Abu-Safe, H.

O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
[Crossref]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Alshurman, K.

O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
[Crossref]

Alzoubi, O. H.

O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
[Crossref]

Asatryan, A. A.

Atwater, H. A.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
[Crossref]

Baek, S.-H.

F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
[Crossref] [PubMed]

Bai, S.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Bao, H.

Bardi, I.

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

Botten, L. C.

Brongersma, M. L.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
[Crossref]

Cendes, Z.

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

Chang, H.-C.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Chou, S. Y.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

Cui, Y.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
[Crossref]

de Sterke, C. M.

Demir, H. V.

Dossou, K. B.

Du, Q. G.

Fan, Z.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Fountaine, K. T.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
[Crossref]

Garnett, E. C.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
[Crossref]

Guo, Y.-X.

R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
[Crossref]

He, J.-H.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Hua, B.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Huang, N.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
[Crossref]

Kam, C. H.

Khan, F.

F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

Kim, J. H.

F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
[Crossref] [PubMed]

Kwong, D.-L.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Lai, K.-Y.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Li, J.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Li, X.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Lien, D.-H.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
[Crossref]

Lin, C.-A.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Lin, Q.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

McGehee, M. D.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
[Crossref]

McPhedran, R. C.

Morton, K. J.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Naseem, H. A.

O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
[Crossref]

Nieberg, G.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

Patchett, S.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

Perry, D.

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

Poulton, C. G.

Povinelli, M. L.

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
[Crossref]

Remski, R.

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

Ren, R.

R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
[Crossref]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Ruan, X.

Saini, S. S.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

Shen, W.

Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
[Crossref] [PubMed]

Sturmberg, B. C. P.

Sun, X. W.

Tsai, M.-L.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Walia, J.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

Wang, H.-P.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

Whitney, W. S.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
[Crossref]

Wong, S. M.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Ye, Q.

Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
[Crossref] [PubMed]

Yu, H.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Yu, H. Y.

Zeng, Y.

Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
[Crossref] [PubMed]

Zhang, G.

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

Zhang, Q.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Zhu, R.-H.

R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
[Crossref]

Annu. Rev. Mater. Res. (1)

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011).
[Crossref]

Appl. Phys. Lett. (1)

J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113 (2009).
[Crossref] [PubMed]

IEEE Trans. Magn. (1)

I. Bardi, R. Remski, D. Perry, and Z. Cendes, “Plane wave scattering from frequency-selective surfaces by the finite-element method,” IEEE Trans. Magn.38(2), 641–644 (2002).
[Crossref]

J. Appl. Phys. (1)

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys.116(15), 153106 (2014).
[Crossref]

J. Mater. Chem. C (1)

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C2(17), 3144–3171 (2014).
[Crossref]

J. Opt. (1)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012).
[Crossref]

Nano Lett. (2)

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays,” Nano Lett.12(8), 4228–4234 (2012).
[Crossref] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett.8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Nanoscale (1)

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology19(34), 345301 (2008).
[Crossref] [PubMed]

Opt. Eng. (1)

R. Ren, Y.-X. Guo, and R.-H. Zhu, “Enhanced absorption in elliptical silicon nanowire arrays for solar energy harvesting,” Opt. Eng.53(2), 027102 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Sci. Rep. (1)

Y. Zeng, Q. Ye, and W. Shen, “Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits,” Sci. Rep.4, 4915 (2014).
[Crossref] [PubMed]

Sci. World J. (1)

F. Khan, S.-H. Baek, and J. H. Kim, “Dependence of performance of si nanowire solar cells on geometry of the nanowires,” Sci. World J.2014, 358408 (2014).
[Crossref] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic,1985).

O. H. Alzoubi and H. Naseem, “Broad band absorption silicon nanowire array using diverse radii for photovoltaic applications,” in Proceedings of IEEE Conference on Photovoltaic Specialist Conference (PVSC) (IEEE 40th, 2014), pp. 2197–2201.
[Crossref]

O. H. Alzoubi, H. Abu-Safe, K. Alshurman, and H. A. Naseem, “Broadband Absorptance High Efficiency Silicon Nanowire Fractal Arrays for Photovoltaic Applications,” in Proceedings of MRS meeting, 1707 (2014).
[Crossref]

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 2012), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) 3D depiction of a uniform periodic SiNW array, and the top view of the unit cell that is used in simulation domain to represent the array, and (b) absorption spectra of uniform periodic SiNW arrays, with fixed lattice constant and height (h) at different radius values (R). The absorption peaks that correspond to each radius value are shown, where the red shift due to radius increases is clearly observed.
Fig. 2
Fig. 2 Absoption spectra of the four different SiNW arrays: (a) uniform periodic array, and modified periodic array with (b) two, (c) three, and (d) four nanowires radii. The insets show 3D depections and top views of the unit cells of the NW arrays with color codes based on NW radius values as in Fig. 1. Lattice constant and the NW hieght in all arrays are 400 nm and 2.3 µm, respectively.
Fig. 3
Fig. 3 Absorption spectra of diverse SiNW arrays for two different distributions: (a) rectangular lattice structure (b) hexagonal lattice structure. The insets show 3D depiction and top view of the arrays.
Fig. 4
Fig. 4 (a) Unit cell of the diamond crystal structure, (b) planar view of the diamond crystal unit cell as seen from the [100] direction, and (c) top view of the periodic unit cell with diamond-like distribution of the SiNWs that are color coded based on the radius value.
Fig. 5
Fig. 5 Schematic of the limited diversity DLA: (a) 3D depiction of the DLA with different colors coding the values of the NWs radius, (b) top view of the array, and (c) the unit cell of the DLA.
Fig. 6
Fig. 6 Schematic of the broad diversity DLA: (a) 3D depiction of the DLA with different colors coding the values of the NWs radius, (b) top view of the array, and (c) the unit cell of the DLA.
Fig. 7
Fig. 7 Absorption spectra for optimized uniform periodic SiNW array, and diverse arrays (modified optimized uniform periodic arrays). NWs with four different radius values are included in the modified arrays as depicted in the inset.
Fig. 8
Fig. 8 (a) Constant value lattice constant, variable NW radius values using 10% scaling increments, (b) fixed filling fraction 24% with scaling of the unit cell and the radii values in 10% increments.
Fig. 9
Fig. 9 Absorption spectra of thin film, optimized uniform periodic array, modified periodic array with diversity, limited diversity DLA, and broad diversity DLA. The height (h) of the arrays and thickness of the thin film are 2.3 µm.
Fig. 10
Fig. 10 The angular response of the limited radii diversity DLA at: (a) parallel, and (b) perpendicular polarizations at different orientations of the plane of incidence with respect to the lattice structure expressed by 11 and 10 vectors.

Tables (2)

Tables Icon

Table 1 The ultimate efficiency and the filling fraction of the SiNW arrays

Tables Icon

Table 2 Ultimate efficiency and filling fraction for different optimized SiNW arrays

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(λ)=1R(λ)T(λ)
η= 315nm 1000nm I(λ) A(λ) λ λ g dλ 315nm 4000nm I(λ)dλ

Metrics