Abstract

The tunable Stokes laser characteristics based on the stimulated polariton scattering in KTiOPO4 (KTP) crystal and the intracavity frequency doubling properties for the Stokes laser are investigated for the first time. When the pumping laser wavelength is 1064.2 nm, and the angle between the pumping and Stokes beams outside the KTP crystal changes from 1.875° to 6.750°, the obtained tunable Stokes laser wavelength varies discontinuously from 1076.5 nm to 1091.4 nm with four gaps. When the pumping pulse energy is 120.0 mJ, the maximum Stokes pulse energy is 46.5 mJ obtained at the wavelength of 1086.6 nm. By inserting a LiB3O5 (LBO) crystal into the cavity, the obtained frequency-doubled laser wavelength is inconsecutive tunable from 538.5 nm to 543.8 nm. The maximum frequency-doubled laser pulse energy is 15.9 mJ at the wavelength of 543.5 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling

Jie Zang, Zhenhua Cong, Xiaohan Chen, Xingyu Zhang, Zengguang Qin, Zhaojun Liu, Jianren Lu, Dong Wu, Qiang Fu, Shiqi Jiang, and Shaojun Zhang
Opt. Express 24(7) 7558-7565 (2016)

THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal

Weitao Wang, Zhenhua Cong, Zhaojun Liu, Xingyu Zhang, Zengguang Qin, Guanqi Tang, Ning Li, Yuangeng Zhang, and Qingming Lu
Opt. Express 22(14) 17092-17098 (2014)

Extracavity pumped BaWO4 anti-Stokes Raman laser

Cong Wang, Xingyu Zhang, Qingpu Wang, Zhenhua Cong, Zhaojun Liu, Wei Wei, Weitao Wang, Zhenguo Wu, Yuangeng Zhang, Lei Li, Xiaohan Chen, Ping Li, Huaijin Zhang, and Shuanghong Ding
Opt. Express 21(22) 26014-26026 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
    [Crossref]
  2. M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).
  3. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  4. G. A. Rines, D. M. Rines, and P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in Advanced Solid State Lasers, Vol. 20 of 1994 OSA Proceeding Series (OSA, 1994), paper PO9.
  5. C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
    [Crossref]
  6. L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
    [Crossref]
  7. J. P. Fève, O. Pacaud, B. Boulanger, B. Ménaert, J. Hellström, V. Pasiskevicius, and F. Laurell, “Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,” Opt. Lett. 26(23), 1882–1884 (2001).
    [Crossref] [PubMed]
  8. M. Roth, N. Angert, E. Gold, and M. Tseitlin, “High conversion efficiency of an eye-safe KTP monolithic OPO,” in Advanced Solid-State Lasers, Vol. 68 of 2002 Trends in Optics and Photonics Series (OSA, 2002), paper MB12.
  9. W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).
  10. J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
    [Crossref]
  11. C. Y. Cho, Y. C. Chen, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator,” Opt. Express 22(7), 7625–7631 (2014).
    [Crossref] [PubMed]
  12. Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
    [Crossref]
  13. Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37(24), 5727–5730 (1998).
    [Crossref] [PubMed]
  14. S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr, Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
    [Crossref]
  15. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
    [Crossref]
  16. G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
    [Crossref]
  17. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  18. G. A. Massey, T. M. Loehr, L. J. Willis, and J. C. Johnson, “Raman and electrooptic properties of potaśsium titanate phosphate,” Appl. Opt. 19(24), 4136–4137 (1980).
    [Crossref] [PubMed]
  19. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
    [Crossref]
  20. H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
    [Crossref]
  21. F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
    [Crossref]
  22. H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
    [Crossref]
  23. Y. J. Huang, Y. F. Chen, W. D. Chen, and G. Zhang, “Comparative study of intracavity KTP-based Raman generation between Nd:YAP and Nd:YAG lasers operating on the 4F3/2 → 4I13/2 transition,” Opt. Express 23(8), 10435–10443 (2015).
    [Crossref] [PubMed]
  24. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
    [Crossref] [PubMed]
  25. L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
    [Crossref] [PubMed]
  26. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [Crossref]
  27. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  28. G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
    [Crossref]
  29. C. Wang, X. Zhang, Q. Wang, Z. Cong, Z. Liu, W. Wei, W. Wang, Z. Wu, Y. Zhang, L. Li, X. Chen, P. Li, H. Zhang, and S. Ding, “Extracavity pumped BaWO4 anti-Stokes Raman laser,” Opt. Express 21(22), 26014–26026 (2013).
    [Crossref] [PubMed]

2015 (2)

2014 (4)

C. Y. Cho, Y. C. Chen, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator,” Opt. Express 22(7), 7625–7631 (2014).
[Crossref] [PubMed]

W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
[Crossref] [PubMed]

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

2013 (2)

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

C. Wang, X. Zhang, Q. Wang, Z. Cong, Z. Liu, W. Wei, W. Wang, Z. Wu, Y. Zhang, L. Li, X. Chen, P. Li, H. Zhang, and S. Ding, “Extracavity pumped BaWO4 anti-Stokes Raman laser,” Opt. Express 21(22), 26014–26026 (2013).
[Crossref] [PubMed]

2012 (2)

L. Li, Z. Liu, X. Zhang, Q. Wang, X. Wan, Z. Cong, Y. Zhang, W. Wang, and Z. Wu, “Characteristics of the temperature-tunable Nd:YAG/YVO4 Raman laser,” Opt. Lett. 37(13), 2637–2639 (2012).
[Crossref] [PubMed]

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

2011 (1)

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

2008 (1)

2006 (1)

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

2005 (1)

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

2004 (1)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

2002 (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

2001 (1)

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

1998 (2)

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37(24), 5727–5730 (1998).
[Crossref] [PubMed]

1997 (1)

1996 (2)

L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
[Crossref]

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

1994 (1)

C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
[Crossref]

1988 (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

1980 (1)

1976 (1)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Bai, S.

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr, Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Benjamin, S. D.

L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
[Crossref]

Bhar, G. C.

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

Bierlein, J. D.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Boulanger, B.

Brehat, F.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Canalias, C.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

Carabatos-Nedelec, C.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Chang, Y. T.

Chaudhary, A. K.

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

Chen, W. D.

Chen, X.

Chen, Y. C.

Chen, Y. F.

Chen, Y. S.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Cho, C. Y.

Chu, H. W.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Cong, Z.

Cong, Z. H.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Cui, Q.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Ding, S.

Dong, J.

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr, Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Ellingson, R. J.

C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
[Crossref]

Fève, J. P.

Fontana, M. D.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

He, J. L.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Hellström, J.

Huang, H. T.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Huang, J. Y.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Huang, T. M.

Huang, Y. J.

Huang, Y. P.

Ito, H.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Ito, R.

Izawa, Y.

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Jabczynski, J. K.

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

Johnson, J. C.

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Kiriyama, H.

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Kitamoto, A.

Kondo, T.

Kong, W. J.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Kugel, G. E.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Kwiatkowski, J.

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

Laurell, F.

Le, X.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Lee, L. J.

Li, D.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, G.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, L.

Li, N.

Li, P.

Li, T.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Li, Y.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Liu, Z.

Loehr, T. M.

Lu, Q.

Ma, L. L.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Mangin, J.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Marnier, G.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Massey, G. A.

Ménaert, B.

Mori, Y.

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

Nakai, S.

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Pacaud, O.

Pasiskevicius, V.

Powers, P. E.

C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
[Crossref]

Qian, L.

L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
[Crossref]

Qiao, W.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Qin, Z.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Rudra, A. M.

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

Sasaki, T.

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

Shi, M.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Shirane, M.

Shoji, I.

Shu, X.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Smith, P. W. E.

L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
[Crossref]

Srinivasan, N.

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Su, F. F.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Su, K. W.

Tang, C. L.

C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
[Crossref]

Tang, G.

Tsai, S. W.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Wachulak, P.

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

Wan, X.

Wang, C.

Wang, C. L.

Wang, Q.

Wang, W.

Wang, W. T.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Wang, Y.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Wei, W.

Willis, L. J.

Wu, W. D.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Wu, Z.

Wyncke, B.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Yamanaka, M.

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

Yang, K. J.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Yang, X. Q.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Zendzian, W.

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

Zhang, G.

Zhang, H.

Zhang, X.

Zhang, X. Y.

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Zhang, Y.

Zhao, J.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Zhao, S. Z.

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

Zhuang, W. Z.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (6)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, “Highly efficient difference-frequency generation in KTP,” Appl. Phys. B 63(2), 141–144 (1996).
[Crossref]

W. Żendzian, J. K. Jabczyński, P. Wachulak, and J. Kwiatkowski, “Highly-repetition-rate, intracavity-pumped KTP OPO at 1572 nm,” Appl. Phys. B 80(3), 329–332 (2005).

C. L. Tang, P. E. Powers, and R. J. Ellingson, “Optical parametric processes and broadly tunable femtosecond sources,” Appl. Phys. B 58(3), 243–248 (1994).
[Crossref]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. W. Chu, K. J. Yang, T. Li, S. Z. Zhao, Y. Li, D. Li, G. Li, J. Zhao, and W. Qiao, “Simultaneous Stokes and anti-Stokes lines operation within a Yb:YAG laser at 1050 nm,” IEEE Photonics Technol. Lett. 26(23), 2369–2371 (2014).
[Crossref]

J. Appl. Phys. (1)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

J. Korean Phys. Soc. (1)

M. Yamanaka, N. Srinivasan, H. Kiriyama, Y. Izawa, and S. Nakai, “All-solid-state tunable KTP optical parametric oscillator amplifier system,” J. Korean Phys. Soc. 33(3), 244–250 (1998).

J. Opt. Soc. Am. B (1)

J. Phys. C Solid State Phys. (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Laser Phys. (1)

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr, Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Laser Phys. Lett. (1)

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Opt. Commun. (2)

L. Qian, S. D. Benjamin, and P. W. E. Smith, “Picosecond optical parametric oscillator tunable around 1.55 μm,” Opt. Commun. 127(1–3), 73–78 (1996).
[Crossref]

F. F. Su, X. Y. Zhang, W. T. Wang, Z. H. Cong, M. Shi, X. Q. Yang, W. J. Kong, L. L. Ma, and W. D. Wu, “High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at1096 nm wavelength,” Opt. Commun. 305, 201–203 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (2)

M. Roth, N. Angert, E. Gold, and M. Tseitlin, “High conversion efficiency of an eye-safe KTP monolithic OPO,” in Advanced Solid-State Lasers, Vol. 68 of 2002 Trends in Optics and Photonics Series (OSA, 2002), paper MB12.

G. A. Rines, D. M. Rines, and P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in Advanced Solid State Lasers, Vol. 20 of 1994 OSA Proceeding Series (OSA, 1994), paper PO9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Noncollinear phase matching of the three waves in stimulated polariton scattering.
Fig. 2
Fig. 2 The experimental setup.
Fig. 3
Fig. 3 Stokes laser wavelength as a function of the external angle.
Fig. 4
Fig. 4 Stokes pulse energy as a function of the wavelength.
Fig. 5
Fig. 5 Stokes pulse energy as a function of the pumping pulse energy.
Fig. 6
Fig. 6 Waveforms of the original pumping pulse, residual pumping pulse and Stokes pulse.
Fig. 7
Fig. 7 Stokes pulse energies as a function of the external angle with different Stokes output mirrors.
Fig. 8
Fig. 8 Frequency-doubled laser wavelength as a function of the external angle.
Fig. 9
Fig. 9 Frequency-doubled laser pulse energy as a function of the wavelength.
Fig. 10
Fig. 10 Frequency-doubled laser pulse energy as a function of the pumping pulse energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k s = k p u k p o ,
h ν s = h ν p u h ν p o ,

Metrics