Abstract

Employing different output couplers and Cr4+:YAG saturable absorbers with different initial transmittances in a Q-switched mode-locked (QML) Nd:Lu0.15Y0.85VO4 laser, the symmetry of the Q-switched envelope was optimized and the envelope duration was shortened. By applying the above mentioned optimization into an EO/Cr4+:YAG dual-loss-modulated QML Nd:Lu0.15Y0.85VO4 laser, the Q-switched envelope can be further compressed until only containing one mode-locking pulse. Mode-locking pulse energy and peak power up to 1.15 mJ and 3.15 MW, respectively, were achieved. The rate equation theory was utilized to analyze the experimental results, and the theoretical simulation was basically in accordance with the experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High peak power subnanosecond pulse characteristics with different wall structured CNTs in a doubly QML Nd:Lu0.15Y0.85VO4 laser

Wenjing Tang, Jia Zhao, Kejian Yang, Shengzhi Zhao, Guiqiu Li, Dechun Li, Tao Li, and Wenchao Qiao
Photon. Res. 5(1) 46-51 (2017)

Numerical simulation of subnanosecond single mode-locking pulse generation in a doubly Q-switched and mode-locked green laser with EO and Cr4+:YAG

Wenjing Tang, Shengzhi Zhao, Kejian Yang, Jia Zhao, Guiqiu Li, Dechun Li, Tao Li, and Wenchao Qiao
J. Opt. Soc. Am. B 33(1) 1-7 (2016)

High peak power sub-nanosecond pulsed Nd:Lu0.15Y0.85VO4 laser with WS2 saturable absorber and EO modulator

Wenjing Tang, Jia Zhao, Kejian Yang, Shengzhi Zhao, Guiqiu Li, Dechun Li, Tao Li, Wenchao Qiao, and Yonggang Wang
Opt. Mater. Express 7(4) 1180-1187 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
    [Crossref]
  2. J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
    [Crossref]
  3. B. Klimt, “Micromachining with industrial picosecond lasers,” Laser Tech. J. 4(1), 40–43 (2007).
    [Crossref]
  4. J. Yang, L. Wang, X. Wu, T. Cheng, and H. Jiang, “High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues,” Opt. Express 22(13), 15686–15696 (2014).
    [Crossref] [PubMed]
  5. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
  6. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “>3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907–913 (2012).
    [Crossref]
  7. N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
    [Crossref]
  8. D. A. Willis and X. Xu, “Thermal mechanisms of subnanosecond ablation,” Proc. SPIE 4274, 240–247 (2001).
    [Crossref]
  9. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  10. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  11. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  12. H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).
  13. T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
    [Crossref] [PubMed]
  14. J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
    [PubMed]
  15. J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
    [Crossref]
  16. J. Liu, Z. Wang, X. Meng, Z. Shao, B. Ozygus, A. Ding, and H. Weber, “Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal Nd:Gd0.64Y0.36VO4.,” Opt. Lett. 28(23), 2330–2332 (2003).
    [Crossref] [PubMed]
  17. Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
    [Crossref]
  18. J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
    [Crossref] [PubMed]
  19. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17(5), 3264–3269 (2009).
    [Crossref] [PubMed]
  20. D. Weller, “Relating wide band DSO rise time to bandwidth: Lose the 0.35!” EDN 12, 89–94 (2002).
  21. A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).
  22. T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
    [Crossref]
  23. J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
    [Crossref]
  24. P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
    [Crossref]
  25. K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
    [Crossref]
  26. G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
    [Crossref] [PubMed]
  27. W. E. Schmid, “Pulse stretching in a Q-switehed Nd:YAG laser,” IEEE J. Quantum Electron. 16(7), 790–794 (1980).
    [Crossref]
  28. K. Jakubczak, Laser Systems for Applications (InTech, 2011).
  29. L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
    [Crossref]

2015 (1)

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

2014 (1)

2012 (2)

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “>3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907–913 (2012).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

2011 (3)

2010 (6)

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
[Crossref] [PubMed]

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
[Crossref]

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

2009 (1)

2008 (3)

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

2007 (1)

B. Klimt, “Micromachining with industrial picosecond lasers,” Laser Tech. J. 4(1), 40–43 (2007).
[Crossref]

2006 (1)

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

2004 (2)

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

D. Weller, “Relating wide band DSO rise time to bandwidth: Lose the 0.35!” EDN 12, 89–94 (2002).

2001 (2)

J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
[Crossref]

D. A. Willis and X. Xu, “Thermal mechanisms of subnanosecond ablation,” Proc. SPIE 4274, 240–247 (2001).
[Crossref]

2000 (1)

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

1998 (1)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

1980 (1)

W. E. Schmid, “Pulse stretching in a Q-switehed Nd:YAG laser,” IEEE J. Quantum Electron. 16(7), 790–794 (1980).
[Crossref]

Alsousb, M. B.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

An, J.

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Balling, P.

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Bhandari, R.

Bille, J. F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Blanaru, C.

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Chen, H. R.

Chen, L.

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Cheng, K.

Cheng, T.

Christensen, M. S.

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Dabu, R.

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Damzen, M. J.

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

Ding, A.

Du, J.

Eichhorn, M.

G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
[Crossref]

Fan, Y. X.

Fenic, C.

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Furukawa, Y.

George, J.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Götz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Gower, M. C.

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

Guo, L.

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Gupta, P. K.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Hang, Y.

He, J. L.

Horvath, C.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Hsieh, W. F.

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

Hsu, H. H.

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

Hu, D.

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Jiang, H.

Jiang, M.

Juhasz, T.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kieleck, C.

G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
[Crossref]

Klimt, B.

B. Klimt, “Micromachining with industrial picosecond lasers,” Laser Tech. J. 4(1), 40–43 (2007).
[Crossref]

Lam, Y. L.

J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
[Crossref]

Li, D.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Li, G.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Li, M.

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Li, T.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

Lin, J. H.

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

Lin, K. H.

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

Liu, J.

Liu, S.

Loesel, F. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Luo, H.

Meng, X.

Milne, D. K.

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

Minassian, A.

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

Miyamoto, A.

Miyamoto, K.

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Nathan, T. P. S.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Nielsen, J. B.

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Okida, M.

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

Omatsu, T.

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

Ozygus, B.

Pavel, N.

Qiao, W.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

Ranganathan, K.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Rizvi, N. H.

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

Rumsby, P. T.

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

Rusen, L.

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Savolainen, J. M.

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Schmid, W. E.

W. E. Schmid, “Pulse stretching in a Q-switehed Nd:YAG laser,” IEEE J. Quantum Electron. 16(7), 790–794 (1980).
[Crossref]

Shao, Z.

Sharma, S. K.

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Shen, D.

J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
[Crossref]

Stoppler, G.

G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
[Crossref]

Stratan, A.

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

Sun, X.

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Tago, T.

Taira, T.

Tam, S. C.

J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
[Crossref]

Tang, D.

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Wang, H. T.

Wang, J.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17(5), 3264–3269 (2009).
[Crossref] [PubMed]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Wang, L.

Wang, Y.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

Wang, Y. G.

Wang, Z.

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17(5), 3264–3269 (2009).
[Crossref] [PubMed]

J. Liu, Z. Wang, X. Meng, Z. Shao, B. Ozygus, A. Ding, and H. Weber, “Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal Nd:Gd0.64Y0.36VO4.,” Opt. Lett. 28(23), 2330–2332 (2003).
[Crossref] [PubMed]

Weber, H.

Wei, M. D.

Weller, D.

D. Weller, “Relating wide band DSO rise time to bandwidth: Lose the 0.35!” EDN 12, 89–94 (2002).

Willis, D. A.

D. A. Willis and X. Xu, “Thermal mechanisms of subnanosecond ablation,” Proc. SPIE 4274, 240–247 (2001).
[Crossref]

Wu, X.

Xie, G.

Xu, X.

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

D. A. Willis and X. Xu, “Thermal mechanisms of subnanosecond ablation,” Proc. SPIE 4274, 240–247 (2001).
[Crossref]

Yang, J.

Yang, K.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Yu, H.

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17(5), 3264–3269 (2009).
[Crossref] [PubMed]

Yu, Y.

Zhang, G.

Zhang, H.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G. Xie, H. Luo, and M. Jiang, “Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal,” Opt. Express 17(5), 3264–3269 (2009).
[Crossref] [PubMed]

Zhang, L. H.

Zhang, Y.

Zhao, B.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

Zhao, J.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

Zhao, S.

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

G. Zhang, S. Zhao, G. Li, D. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49(24), 4524–4530 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Zhuang, S.

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Zhuo, Z.

AIP Adv. (1)

L. Guo, Z. Wang, H. Yu, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Sun, and X. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Adv. 1(4), 042143 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

T. Omatsu, K. Miyamoto, M. Okida, A. Minassian, and M. J. Damzen, “1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber,” Appl. Phys. B 101(1-2), 65–70 (2010).
[Crossref]

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).

P. K. Mukhopadhyay, M. B. Alsousb, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Qswitched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79(6), 713–720 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. B. Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

EDN (1)

D. Weller, “Relating wide band DSO rise time to bandwidth: Lose the 0.35!” EDN 12, 89–94 (2002).

IEEE J. Quantum Electron. (4)

J. Liu, D. Shen, S. C. Tam, and Y. L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).
[Crossref]

K. Yang, S. Zhao, G. Li, M. Li, D. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4/KTP green laser with a GaAs wafer,” IEEE J. Quantum Electron. 42(7), 683–689 (2006).
[Crossref]

W. E. Schmid, “Pulse stretching in a Q-switehed Nd:YAG laser,” IEEE J. Quantum Electron. 16(7), 790–794 (1980).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Zhang, J. Zhao, K. Yang, S. Zhao, T. Li, G. Li, D. Li, W. Qiao, Y. Wang, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100506 (2015).

IEEE Photonics J. (1)

Y. Zhao, Z. Wang, H. Yu, and X. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photonics J. 4(6), 2285–2291 (2012).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

A. Stratan, L. Rusen, R. Dabu, C. Fenic, and C. Blanaru, “Picosecond laser system based on microchip oscillator,” J. Optoelectron. Adv. Mater. 10, 3022–3028 (2008).

Laser Phys. Lett. (1)

J. H. Lin, K. H. Lin, H. H. Hsu, and W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[Crossref]

Laser Tech. J. (1)

B. Klimt, “Micromachining with industrial picosecond lasers,” Laser Tech. J. 4(1), 40–43 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (3)

N. H. Rizvi, D. K. Milne, P. T. Rumsby, and M. C. Gower, “Laser micromachining: new developments and applications,” Proc. SPIE 3933, 261–271 (2000).
[Crossref]

D. A. Willis and X. Xu, “Thermal mechanisms of subnanosecond ablation,” Proc. SPIE 4274, 240–247 (2001).
[Crossref]

G. Stoppler, C. Kieleck, and M. Eichhorn, “High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR,” Proc. SPIE 7836, 783609 (2010).
[Crossref]

Other (1)

K. Jakubczak, Laser Systems for Applications (InTech, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental configuration for the kHz sub-nanosecond Nd:Lu0.15Y0.85VO4 laser with EO and Cr4+:YAG.
Fig. 2
Fig. 2 QML pulse shapes output by different groups of T0/T at the pump power of 8.76 W.
Fig. 3
Fig. 3 Pulse width of Q-switched envelope (at Q-switched mode-locking stage) and mode-locking pulse (at single mode-locking stage) generated with different T0 and T as a function of incident pump power.
Fig. 4
Fig. 4 QML pulse shapes output by the EO/Cr4+:YAG dual-loss-modulated laser with different T0 and T at pump power of (a) 6.52 and (b) 9.24 W.
Fig. 5
Fig. 5 Mode-locking pulse at time scale of 20 ms.
Fig. 6
Fig. 6 (a) Average output power and (b) Q-switched envelope energy as a function of incident pump power. Symbol, experimental data; Solid curve, theoretical result.
Fig. 7
Fig. 7 (a) Average pulse energy and (b) peak power of mode-locking pulses as a function of incident pump power.
Fig. 8
Fig. 8 Calculated temporal shapes of Q-switched envelopes corresponding to pulses illustrated in Fig. 4.

Tables (1)

Tables Icon

Table 1 Parameters for theoretical calculation [28, 29 ].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l A
n ( r , t k ) = exp ( t k τ a ) m = 0 k 1 exp [ w l 2 w G 2 exp ( 2 r 2 w G 2 ) Φ m ] × { R i n ( r ) exp ( t k τ a ) 0 t k m = 0 k 1 exp [ w l 2 w G 2 exp ( 2 r 2 w G 2 ) Φ m ] d t + n i exp ( 2 r 2 w p 2 ) }
n s 1 ( r , t k ) = [ m = 0 k 1 exp [ w l 2 w A 2 exp ( 2 r 2 w A 2 ) Φ m ] ] ( σ g s + σ e s ) / σ × { 0 k [ m = 0 k 1 exp [ w l 2 w A 2 exp ( 2 r 2 w A 2 ) Φ m ] ] ( σ g s + σ e s ) / σ × σ e s n s 0 2 σ τ p × m = 0 k 1 Φ m w l 2 w A 2 exp ( 2 r 2 w A 2 ) sech 2 ( t m t r τ p ) d t + n 0 }
n i = R i n τ a [ 1 exp ( 1 / f p τ a ) ]
P ( t ) = h ν π w l 2 8 σ τ p ( ln 1 R ) k = 0 ϕ k sec h 2 ( t t k τ p )
E = h ν π w l 2 8 σ ( ln 1 R ) k = 0 ϕ k

Metrics