Abstract

We present a computational study of the internal optical forces arising in plasmonic gap antennas, dolmen structures and split rings. We find that very strong internal forces perpendicular to the propagation direction appear in these systems. These internal forces show a rich behaviour with varying wavelength, incident polarisation and geometrical parameters, which we explain in terms of the polarisation charges induced on the structures. Various interesting and anomalous features arise such as lateral force reversal, optical pulling force, and circular polarisation-induced forces and torques along directions symmetry-forbidden for orthogonal linear polarisations. Understanding these effects and mastering internal forces in plasmonic nanostructures will be instrumental in implementing new functionalities in these nanophotonic systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures

T. V. Raziman and Olivier J. F. Martin
Opt. Express 21(18) 21500-21507 (2013)

Resonance hybridization in double split-ring resonator metamaterials

Hongcang Guo, Na Liu, Liwei Fu, Todd P. Meyrath, Thomas Zentgraf, Heinz Schweizer, and Harald Giessen
Opt. Express 15(19) 12095-12101 (2007)

Folded dipole plasmonic resonators

K. Choonee and R. R. A. Syms
Opt. Express 21(22) 25841-25850 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  2. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004).
    [Crossref] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  4. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
    [Crossref]
  5. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  7. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  8. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
    [Crossref] [PubMed]
  9. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
    [Crossref] [PubMed]
  10. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
    [Crossref]
  11. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
    [Crossref] [PubMed]
  12. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
    [Crossref]
  13. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
    [Crossref] [PubMed]
  14. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [Crossref]
  15. V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
    [Crossref]
  16. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18, 25665–25676 (2010).
    [Crossref] [PubMed]
  17. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21, 6601–6608 (2013).
    [Crossref] [PubMed]
  18. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
    [Crossref] [PubMed]
  19. A. Ji, T. V. Raziman, J. Butet, R. P. Sharma, and O. J. F. Martin, “Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach,” Opt. Lett. 39, 4699–4702 (2014).
    [Crossref] [PubMed]
  20. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  21. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref] [PubMed]
  22. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
    [Crossref] [PubMed]
  23. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic fano resonances,” ACS Nano 5, 8999–9008 (2011).
    [Crossref] [PubMed]
  24. A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
    [Crossref]
  25. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  26. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
    [Crossref] [PubMed]
  27. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  28. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  29. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  30. P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81, 939–941 (2002).
    [Crossref]
  31. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
    [Crossref]
  32. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
    [Crossref]
  33. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
    [Crossref]
  34. J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22, 10858–10867 (2014).
    [Crossref] [PubMed]
  35. F. Abelès, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
    [Crossref]
  36. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
    [Crossref]
  37. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
    [Crossref]
  38. T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express 21, 21500–21507 (2013).
    [Crossref] [PubMed]
  39. T. V. Raziman, R. J. Wolke, and O. J. F. Martin, “Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?”; Faraday Discuss. 178, 421–434 (2015).
    [Crossref] [PubMed]
  40. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
    [Crossref]
  41. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  42. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  43. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref] [PubMed]
  44. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
    [Crossref]
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  46. B. Gallinet and O. J. F. Martin, “Relation between near–field and far–field properties of plasmonic fano resonances,” Opt. Express 19, 22167–22175 (2011).
    [Crossref] [PubMed]
  47. Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
    [Crossref]
  48. H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
    [Crossref] [PubMed]
  49. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
    [Crossref] [PubMed]
  50. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett. 33, 3001–3003 (2008).
    [Crossref] [PubMed]
  51. A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
    [Crossref]
  52. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
    [Crossref] [PubMed]
  53. J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
    [Crossref] [PubMed]
  54. O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
    [Crossref] [PubMed]
  55. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
    [Crossref]
  56. P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
    [Crossref]
  57. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
    [Crossref] [PubMed]
  58. X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
    [Crossref] [PubMed]
  59. N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
    [Crossref]

2015 (2)

T. V. Raziman, R. J. Wolke, and O. J. F. Martin, “Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?”; Faraday Discuss. 178, 421–434 (2015).
[Crossref] [PubMed]

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

2014 (6)

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22, 10858–10867 (2014).
[Crossref] [PubMed]

A. Ji, T. V. Raziman, J. Butet, R. P. Sharma, and O. J. F. Martin, “Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach,” Opt. Lett. 39, 4699–4702 (2014).
[Crossref] [PubMed]

2013 (6)

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21, 6601–6608 (2013).
[Crossref] [PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express 21, 21500–21507 (2013).
[Crossref] [PubMed]

Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

2012 (1)

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

2011 (6)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Relation between near–field and far–field properties of plasmonic fano resonances,” Opt. Express 19, 22167–22175 (2011).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref] [PubMed]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[Crossref]

2010 (6)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18, 25665–25676 (2010).
[Crossref] [PubMed]

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

2009 (4)

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
[Crossref]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

2008 (4)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett. 33, 3001–3003 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

2004 (4)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
[Crossref]

M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004).
[Crossref] [PubMed]

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

2002 (3)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81, 939–941 (2002).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1999 (2)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[Crossref]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

1986 (1)

1976 (1)

F. Abelès, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Abelès, F.

F. Abelès, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[Crossref]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Asenjo-Garcia, A.

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

Ashkin, A.

Bagnall, D. M.

A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Brugger, J.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Butet, J.

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

Chan, C. T.

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Chaumet, P. C.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
[Crossref]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Chen, H.

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

Chen, J.

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Chen, Y.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Cheng, W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, S.

Cui, T. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Dholakia, K.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

Ding, B.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

Ding, K.

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

Dong, B.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

Dorpe, P. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Dziedzic, J. M.

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Fu, L.

Fung, K. H.

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Relation between near–field and far–field properties of plasmonic fano resonances,” Opt. Express 19, 22167–22175 (2011).
[Crossref] [PubMed]

Garca de Abajo, F. J.

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81, 939–941 (2002).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Giessen, H.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
[Crossref] [PubMed]

Girard, C.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[Crossref]

Gschneidtner, T.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

Guffey, M. J.

Guo, H.

Guo, P.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Guyot-Sionnest, P.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Huang, L.

Huang, X.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Ji, A.

Jiang, Q.

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[Crossref]

Johansson, P.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Kabashin, A. V.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[Crossref]

Käll, M.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

Kern, A. M.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[Crossref]

Koschny, T.

Krauss, T. F.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

Kuo, M.-K.

Lehmuskero, A.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

Li, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

Li, Z.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

Liaw, J.-W.

Lin, Z.

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Liu, H.

Liu, M.

Liu, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
[Crossref] [PubMed]

Liu, Q.

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

Liu, S.

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

Lo, W.-J.

Lovera, A.

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Maerkl, S. J.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Mansuripur, M.

Martin, O. J. F.

T. V. Raziman, R. J. Wolke, and O. J. F. Martin, “Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?”; Faraday Discuss. 178, 421–434 (2015).
[Crossref] [PubMed]

A. Ji, T. V. Raziman, J. Butet, R. P. Sharma, and O. J. F. Martin, “Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach,” Opt. Lett. 39, 4699–4702 (2014).
[Crossref] [PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express 21, 21500–21507 (2013).
[Crossref] [PubMed]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Relation between near–field and far–field properties of plasmonic fano resonances,” Opt. Express 19, 22167–22175 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
[Crossref]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[Crossref] [PubMed]

L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett. 33, 3001–3003 (2008).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81, 939–941 (2002).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Mazilu, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

Meyrath, T. P.

Miljkovic, V. D.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Ng, J.

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
[Crossref]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Ogier, R.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Pakizeh, T.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

Pelton, M.

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Pesic, J.

Ploschner, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Potts, A.

A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
[Crossref]

Premaratne, M.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Rahmani, A.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
[Crossref]

Raziman, T. V.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Sannomiya, T.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[Crossref]

Savu, V.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Scherer, N. F.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Schweizer, H.

Sepulveda, B.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

Sharma, R. P.

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

Si, K. J.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Sikdar, D.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Song, C.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Su, B.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

Tassin, P.

Tittl, A.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

Tong, L.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Tosun, M.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Toussaint, K. C.

Vazquez-Mena, O.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Villanueva, L. G.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Voros, J.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Wang, P.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Wolke, R. J.

T. V. Raziman, R. J. Wolke, and O. J. F. Martin, “Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?”; Faraday Discuss. 178, 421–434 (2015).
[Crossref] [PubMed]

Xiao, J. J.

Xiong, W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Xu, H.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

Yao, Y.

Yap, L. W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

Yue, S.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Zentgraf, T.

Zhang, Q.

Zhang, S.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, X. M.

Zhao, R.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
[Crossref]

Zi, J.

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

ACS Nano (4)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force,” ACS Nano 8, 701–708 (2014).
[Crossref]

H. Chen, S. Liu, J. Zi, and Z. Lin, “Fano resonance-induced negative optical scattering force on plasmonic nanoparticles,” ACS Nano 9, 1926–1935 (2015).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6, 5474–5481 (2012).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[Crossref]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[Crossref]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81, 939–941 (2002).
[Crossref]

Faraday Discuss. (1)

T. V. Raziman, R. J. Wolke, and O. J. F. Martin, “Optical forces in nanoplasmonic systems: how do they work, what can they be useful for?”; Faraday Discuss. 178, 421–434 (2015).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. Nanophoton. (1)

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4, 041570 (2010).
[Crossref]

J. Opt. A: Pure. Appl. Opt. (1)

A. Potts, D. M. Bagnall, and N. I. Zheludev, “A new model of geometric chirality for two-dimensional continuous media and planar meta-materials,” J. Opt. A: Pure. Appl. Opt. 6, 193 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

P. Guo, D. Sikdar, X. Huang, K. J. Si, B. Su, Y. Chen, W. Xiong, L. W. Yap, M. Premaratne, and W. Cheng, “Large-scale self-assembly and stretch-induced plasmonic properties of coreshell metal nanoparticle superlattice sheets,” J. Phys. Chem. C 118, 26816–26824 (2014).
[Crossref]

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114, 7472–7479 (2010).
[Crossref]

Laser Photon. Rev. (1)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

Light Sci. Appl. (1)

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3, e226 (2014).
[Crossref]

Nano Lett. (6)

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garca de Abajo, N. Liu, and B. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13, 2128–2133 (2013).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garca de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129–3134 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nat. Nanotechnol. (1)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6, 268–276 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (9)

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[Crossref] [PubMed]

R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18, 25665–25676 (2010).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Relation between near–field and far–field properties of plasmonic fano resonances,” Opt. Express 19, 22167–22175 (2011).
[Crossref] [PubMed]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21, 6601–6608 (2013).
[Crossref] [PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express 21, 21500–21507 (2013).
[Crossref] [PubMed]

M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004).
[Crossref] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
[Crossref] [PubMed]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
[Crossref] [PubMed]

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22, 10858–10867 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Phil. Trans. R. Soc. Lond. A (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. Lond. A 362, 719–738 (2004).
[Crossref]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (6)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Sci. Rep. (1)

J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan, “Negative optical torque,” Sci. Rep. 4, 6386 (2014).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Surf. Sci. (1)

F. Abelès, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[Crossref]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Scattering cross section as a function of wavelength for a symmetric gap antenna with arm lengths of 600 nm and gap size of 20 nm, shown in inset. (b) Normalised polarisation charges induced on the antenna arms at selected wavelengths.

Fig. 2
Fig. 2

Optical forces on the symmetric antenna arms. Different force components along x-, y- and z-directions are considered (see axes in the inset of Fig. 1(a)).

Fig. 3
Fig. 3

(a) Scattering cross section as a function of wavelength for an asymmetric gap antenna with arm lengths of 600 nm and 400 nm, and gap size of 20 nm, shown in inset. (b) Normalised polarisation charges induced on the antenna arms at selected wavelengths.

Fig. 4
Fig. 4

Optical forces on the asymmetric antenna arm.

Fig. 5
Fig. 5

y-component of the optical torque about the centre of mass of the asymmetric antenna.

Fig. 6
Fig. 6

(a) Scattering cross section, (b) x-component of force, (c) z-component of force, and (d) y-component of torque on the asymmetric antenna as a function of wavelength for various values of the loss parameter γ in Eq. (6).

Fig. 7
Fig. 7

(a) Scattering cross section as a function of wavelength and vertical gap size for the dolmen structure. (b) Scattering cross section of the dolmen for two representative vertical gap sizes, 7 nm and 40 nm. Geometry depicted in inset. (c) Real and imaginary parts of the induced polarisation charges for a dolmen with 7 nm vertical gap at the two scattering peak wavelengths and the scattering dip wavelength. (d) Same as (c) for a vertical gap of 40 nm.

Fig. 8
Fig. 8

Optical forces on (a) horizontal arm (arm 2) of the dolmen along y-direction, and (b) left vertical arm (arm 1) along x-direction.

Fig. 9
Fig. 9

Optical forces on the arms of the dolmen for vertical gap size of (a) 7 nm, and (b) 40 nm.

Fig. 10
Fig. 10

(a) Scattering cross section for different incident polarisations for the inner ring in the split ring structure, as shown in inset. (b) Polarisation charges induced on the inner ring at the scattering peak wavelengths. (c) and (d) show the same results as in (a) and (b), respectively, for the outer ring.

Fig. 11
Fig. 11

(a) Scattering cross section for different incident polarisations, and (b) polarisation charges at the scattering peak wavelengths for the split ring structure.

Fig. 12
Fig. 12

Optical forces on the rings in the split ring structure for (a) x-, and (b) y-polarised incident field.

Fig. 13
Fig. 13

Optical forces on the rings in the split ring structure for (a) L-, and (b) R-polarised incident field.

Fig. 14
Fig. 14

Optical torques on the rings in the split ring structure for (a) L-, and (b) R-polarised incident field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F = S σ n dS , and
T = S r × σ n dS ,
σ = 1 2 [ ε E E * + μ H H * 1 2 ( ε E E * + μ H H * ) I ] ,
q = ε 0 ( E o u t E i n ) n .
C s c = S 1 2 Re [ E s c × H s c * ] n dS | 1 2 Re [ E i n × H i n * ] | .
ε ( ω ) = ε ω p 2 ω ( ω + i γ ) ,

Metrics