Abstract

A lab-on-fiber (LOF) optofluidic platform that provides physiologically relevant microenvironment was developed by integrating a long period grating (LPG) coupled with high order cladding mode to achieve high index sensitivity and a liquid-tight capillary tube assembly as a microfluidic chamber for LPG to mimic physiologically relevant microenvironment. We demonstrate the utility of LOF for in situ monitoring the construction of the [chitosan (CHI)/poly (acrylic acid) (PAA)/gentamicin sulfate (GS)/PAA]n multilayers at monolayer resolution as well as evaluating the rate of GS release at a flow rate of 0.127 mL/min at 37 °C in real time. We reveal that GS is released at a faster rate under the dynamic flow condition than in a static medium. Our findings underscore the importance of conducting drug release studies in physiologically relevant conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin-core fiber structures with overlays for sensing applications

Oleg V. Ivanov, Fan Yang, Fei Tian, and Henry Du
Opt. Express 25(25) 31197-31203 (2017)

Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection

Ming-jie Yin, Bobo Huang, Shaorui Gao, A. Ping Zhang, and Xuesong Ye
Biomed. Opt. Express 7(5) 2067-2077 (2016)

Nanopore thin film enabled optical platform for drug loading and release

Chao Song, Xiangchen Che, and Long Que
Opt. Express 25(16) 19391-19397 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
    [Crossref] [PubMed]
  2. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  3. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  4. N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
    [Crossref] [PubMed]
  5. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  6. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
    [Crossref] [PubMed]
  7. P. T. Hammond, “Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly,” AIChE J. 57(11), 2928–2940 (2011).
    [Crossref]
  8. J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
    [Crossref] [PubMed]
  9. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [Crossref]
  10. A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
    [Crossref] [PubMed]
  11. A. Vengsarkar, P. Lemaire, J. Judkins, V. Bhatia, and J. Sipe, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
  12. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  13. F. Tian, J. Kanka, and H. Du, “Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement,” Opt. Express 20(19), 20951–20961 (2012).
    [Crossref] [PubMed]
  14. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
    [Crossref] [PubMed]
  15. R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).
  16. Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
    [Crossref]
  17. F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
    [Crossref] [PubMed]
  18. S. Korposh, S. W. James, S. W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
    [Crossref] [PubMed]
  19. R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
    [Crossref] [PubMed]
  20. J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
    [Crossref] [PubMed]
  21. F. Tian, J. Kanka, X. Li, and H. Du, “Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings,” Sensor. Actuat, Biol. Chem. 196, 475–479 (2014).
  22. S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
    [Crossref] [PubMed]
  23. A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-on-fiber technology (Springer, 2015).
  24. F. Tian, J. Kanka, B. Zou, K. S. Chiang, and H. Du, “Long-period gratings inscribed in photonic crystal fiber by symmetric CO2 laser irradiation,” Opt. Express 21(11), 13208–13218 (2013).
    [Crossref] [PubMed]
  25. E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
    [Crossref] [PubMed]
  26. Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
    [Crossref]
  27. S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
    [Crossref]
  28. T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
    [PubMed]
  29. J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
    [Crossref] [PubMed]
  30. E. Truumees and H. N. Herkowitz, “Alternatives to autologous bone harvest in spine surgery,” U. Penn. Ortho. J. 12, 77–88 (1999).
  31. J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
    [Crossref] [PubMed]
  32. E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
    [Crossref] [PubMed]
  33. B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
    [Crossref]

2014 (3)

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
[Crossref] [PubMed]

F. Tian, J. Kanka, X. Li, and H. Du, “Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings,” Sensor. Actuat, Biol. Chem. 196, 475–479 (2014).

2013 (2)

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

F. Tian, J. Kanka, B. Zou, K. S. Chiang, and H. Du, “Long-period gratings inscribed in photonic crystal fiber by symmetric CO2 laser irradiation,” Opt. Express 21(11), 13208–13218 (2013).
[Crossref] [PubMed]

2012 (3)

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

F. Tian, J. Kanka, and H. Du, “Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement,” Opt. Express 20(19), 20951–20961 (2012).
[Crossref] [PubMed]

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

2011 (4)

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

P. T. Hammond, “Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly,” AIChE J. 57(11), 2928–2940 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

2010 (3)

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

S. Korposh, S. W. James, S. W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[Crossref] [PubMed]

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

2009 (1)

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

2008 (1)

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

2006 (6)

S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
[Crossref]

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

2004 (1)

B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
[Crossref]

2003 (1)

Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
[Crossref]

2000 (1)

J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
[Crossref] [PubMed]

1999 (1)

E. Truumees and H. N. Herkowitz, “Alternatives to autologous bone harvest in spine surgery,” U. Penn. Ortho. J. 12, 77–88 (1999).

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

1996 (1)

1986 (1)

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

Aherne, F. X.

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

Ankner, J. F.

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

Batty, W. J.

Bhatia, V.

Blaisse, M. R.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Bock, W. J.

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

Braatz, R. D.

J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
[Crossref] [PubMed]

Cavallo, J. A.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Cheung, S. C.

Chiang, K. S.

Christopherson, R. J.

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

Chuliá-Jordán, R.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Chung, M. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Cornell, C. N.

J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
[Crossref] [PubMed]

Cox, J. A.

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

Craighead, H.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Dong, W. F.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Du, H.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Fleming, J. E.

J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
[Crossref] [PubMed]

Garga, R.

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

Gómez, C.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Guo, J. C.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Guzmán, E.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Hammond, P. T.

J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
[Crossref] [PubMed]

P. T. Hammond, “Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly,” AIChE J. 57(11), 2928–2940 (2011).
[Crossref]

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Hao, Y. W.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Harris, M. B.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

He, Z.

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Heflin, J. R.

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

Herkowitz, H. N.

E. Truumees and H. N. Herkowitz, “Alternatives to autologous bone harvest in spine surgery,” U. Penn. Ortho. J. 12, 77–88 (1999).

Hess, L. C.

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

Hsu, H. P.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Huang, N. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Izumrudov, V.

S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
[Crossref]

James, S. W.

Judkins, J.

Kanka, J.

Keith, J.

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

Khan, A. A.

B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
[Crossref]

Kharlampieva, E.

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
[Crossref]

Korposh, S.

Kurabayashi, K.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Lavlinskaia, N.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Lee, J. C.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Lee, S. W.

Lemaire, P.

Li, X.

F. Tian, J. Kanka, X. Li, and H. Du, “Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings,” Sensor. Actuat, Biol. Chem. 196, 475–479 (2014).

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Martin, S. D.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Meng, X.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Min, J.

J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
[Crossref] [PubMed]

Moskowitz, J. S.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Muschler, G. F.

J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
[Crossref] [PubMed]

Nakano, T.

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

Ortega, F.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Pacey, G. E.

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Puckett, S. D.

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

Qi, Z. M.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ramachandran, S.

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

Rubinstein, M.

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

Rubio, R. G.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Salloum, D.

Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
[Crossref]

Samuel, R. E.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Schlenoff, J. B.

Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
[Crossref]

Seo, J. H.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Sipe, J.

Smitha, B.

B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
[Crossref]

Song, J. F.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Spector, M.

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Spendel, W. U.

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

Sridhar, S.

B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
[Crossref]

Stolen, R. H.

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

Strumia, M. C.

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Sui, Z.

Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
[Crossref]

Sukhishvili, S. A.

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
[Crossref]

Sun, H. B.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Sun, Y. L.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Tatam, R. P.

Thompson, J. R.

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

Thyagarajan, K.

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

Tian, F.

Topliss, S.

Tripathi, S. M.

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

Truumees, E.

E. Truumees and H. N. Herkowitz, “Alternatives to autologous bone harvest in spine surgery,” U. Penn. Ortho. J. 12, 77–88 (1999).

Vengsarkar, A.

Wang, Z.

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, R. Z.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Yu, Y. S.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Zelikin, A. N.

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

Zhang, H. L.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Zhang, W. Y.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Zhang, X. L.

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

Zhu, Y.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Zou, B.

ACS Nano (1)

A. N. Zelikin, “Drug releasing polymer thin films: new era of surface-mediated drug delivery,” ACS Nano 4(5), 2494–2509 (2010).
[Crossref] [PubMed]

AIChE J. (1)

P. T. Hammond, “Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly,” AIChE J. 57(11), 2928–2940 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86(22), 223104 (2005).
[Crossref]

Biomaterials (2)

J. Min, R. D. Braatz, and P. T. Hammond, “Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier,” Biomaterials 35(8), 2507–2517 (2014).
[Crossref] [PubMed]

J. S. Moskowitz, M. R. Blaisse, R. E. Samuel, H. P. Hsu, M. B. Harris, S. D. Martin, J. C. Lee, M. Spector, and P. T. Hammond, “The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model,” Biomaterials 31(23), 6019–6030 (2010).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Can. J. Vet. Res. (1)

T. Nakano, J. R. Thompson, R. J. Christopherson, and F. X. Aherne, “Blood flow distribution in hind limb bones and joint cartilage from young growing pigs,” Can. J. Vet. Res. 50(1), 96–100 (1986).
[PubMed]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Lab Chip (1)

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Langmuir (3)

R. Z. Yang, W. F. Dong, X. Meng, X. L. Zhang, Y. L. Sun, Y. W. Hao, J. C. Guo, W. Y. Zhang, Y. S. Yu, J. F. Song, Z. M. Qi, and H. B. Sun, “Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes,” Langmuir 28(23), 8814–8821 (2012).
[Crossref] [PubMed]

E. Guzmán, J. A. Cavallo, R. Chuliá-Jordán, C. Gómez, M. C. Strumia, F. Ortega, and R. G. Rubio, “pH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system,” Langmuir 27(11), 6836–6845 (2011).
[Crossref] [PubMed]

Z. Sui, D. Salloum, and J. B. Schlenoff, “Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping vs. sticking,” Langmuir 19(6), 2491–2495 (2003).
[Crossref]

Macromolecules (2)

S. A. Sukhishvili, E. Kharlampieva, and V. Izumrudov, “Where polyelectrolyte multilayers and polyelectrolyte complexes meet,” Macromolecules 39(26), 8873–8881 (2006).
[Crossref]

B. Smitha, S. Sridhar, and A. A. Khan, “Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells,” Macromolecules 37(6), 2233–2239 (2004).
[Crossref]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Nature (3)

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Orthop. Clin. North Am. (1)

J. E. Fleming, C. N. Cornell, and G. F. Muschler, “Bone cells and matrices in orthopedic tissue engineering,” Orthop. Clin. North Am. 31(3), 357–374 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. Kharlampieva, J. F. Ankner, M. Rubinstein, and S. A. Sukhishvili, “pH-induced release of polyanions from multilayer films,” Phys. Rev. Lett. 100(12), 128303 (2008).
[Crossref] [PubMed]

Science (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Sensor. Actuat, Biol. Chem. (1)

F. Tian, J. Kanka, X. Li, and H. Du, “Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings,” Sensor. Actuat, Biol. Chem. 196, 475–479 (2014).

Sensor. Actuat. Biol. Chem. (1)

R. Garga, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. Biol. Chem. 176, 1121–1127 (2013).

Talanta (2)

S. D. Puckett and G. E. Pacey, “Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor,” Talanta 78(1), 300–304 (2009).
[Crossref] [PubMed]

J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Talanta 70(4), 818–822 (2006).
[Crossref] [PubMed]

U. Penn. Ortho. J. (1)

E. Truumees and H. N. Herkowitz, “Alternatives to autologous bone harvest in spine surgery,” U. Penn. Ortho. J. 12, 77–88 (1999).

Other (1)

A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-on-fiber technology (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the LPG fabrication setup; (b) transmission spectrum of the as-fabricated SMF-LPG.
Fig. 2
Fig. 2 Schematic of the LOF optofluidic platform submersible in heated water bath for drug release investigation. A microflow pump allows for continuous flow of buffer solution in the capillary tube whereas the all-optic interconnections make it possible for real-time, in situ measurements of the drug release from the LbL coating deposited on the SMF-LPG platform.
Fig. 3
Fig. 3 Transmission spectra in SMF-LPG with the number of [CHI/PAA/GS/PAA]n (n = 1,2,3) polyelectrolyte tetralayers as a parameter. Measurements were carried out in situ during the LbL process.
Fig. 4
Fig. 4 Resonance wavelength of the coupled LP0,10 cladding mode as a function of the number of [CHI/PAA/GS/PAA] layers deposited on LPG. Measurements were carried out in situ during LbL growth.
Fig. 5
Fig. 5 Thicknesses of polyelectrolyte multilayers with GS and PAA (4th) as respective terminal layers. Data were obtained for the 1st through the 5th tetralayers in buffer solution at pH 5.
Fig. 6
Fig. 6 Time-resolved monitoring of monolayer deposition for the respective CHI, PAA, GS and PAA (4th) layers within a tetralayer unit.
Fig. 7
Fig. 7 Drug release measurement of SMF-LPG coated with [CHI/PAA/GS/PAA]20 using the LOF optofluidic platform with time as parameter: (a) transmission spectra recorded every 30 mins up to 48 hours; (b)transmission spectra recorded every 1 minute in the first half an hour.Time-resolved monitoring of monolayer deposition for the respective CHI, PAA, GS and PAA (4th) layers within a tetralayer unit.
Fig. 8
Fig. 8 Release profiles of [CHI/PAA/GS/PAA]20 in (a) LOF under dynamic flow of phosphate buffered saline (PBS) solution as represented by the time-dependence shift in the resonance wavelength and (b) the GS release profile of [CHI/PAA/GS/PAA]20 on silicon substrate in static open PBS buffer solution as measured by the well-established [3H] radiolabel method.

Metrics