Abstract

We report a metallic planar lens based on the coupled nanoslits with variable widths for superfocusing. The influence of the interaction between two adjacent nanoslits on the phase delay is systematically investigated using the finite-difference time-domain (FDTD) method. Based on the geometrical optics and the wavefront reconstruction theory, an array of nanoslits perforated in a gold film is optimally designed to achieve the desired phase modulation for light beaming. The simulation result verifies our design in excellent agreement and the realized metallic lens reveals the superfocusing capability of 0.38λ in resolution, well beyond the diffraction limit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metallic planar lens constructed by double-turn waveguides for sub-diffraction-limit focusing

Kunlun Qi, Yechuan Zhu, Hao Sun, and Yiting Yu
Opt. Express 25(18) 21191-21200 (2017)

Optical lens design based on metallic nanoslits with variant widths

Qiaofen Zhu, Dayong Wang, Xianhua Zheng, and Yan Zhang
Appl. Opt. 50(13) 1879-1883 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
    [Crossref]
  3. Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
    [Crossref]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
    [Crossref]
  7. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [Crossref]
  8. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [Crossref] [PubMed]
  9. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  10. Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
    [Crossref]
  11. H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
    [Crossref] [PubMed]
  12. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref] [PubMed]
  13. T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [Crossref]
  14. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011).
    [Crossref] [PubMed]
  15. Y. Yu and H. Zappe, “Theory and implementation of focal shift of plasmonic lenses,” Opt. Lett. 37(9), 1592–1594 (2012).
    [Crossref] [PubMed]
  16. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
    [Crossref] [PubMed]
  17. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  18. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
    [Crossref]
  19. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]

2015 (2)

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

2009 (4)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

2007 (1)

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

2006 (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2005 (3)

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Cai, B.

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chen, L.

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Chen, Q.

Cumming, D. R. S.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dong, X.

Du, C.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Du, Y.

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Gao, H.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Hyun, J. K.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Ji, X. B.

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Jin, E. X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Lauhon, L. J.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, M. H.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lezec, H. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

Li, Z.

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Luo, X.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Mote, R. G.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Odom, T. W.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Shi, C.

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

Shi, H.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

Wang, C.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Wang, Q.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Xu, X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Yang, J.-C.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Yu, Y.

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

Zang, X. F.

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

Zappe, H.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhou, W.

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

Zhu, Y. M.

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Appl. Phys. Lett. (4)

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[Crossref]

J. Mod. Opt. (1)

Y. Fu, R. G. Mote, Q. Wang, and W. Zhou, “Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors,” J. Mod. Opt. 56(14), 1550–1556 (2009).
[Crossref]

J. Opt. (1)

Y. Du, X. F. Zang, C. Shi, X. B. Ji, and Y. M. Zhu, “Shifting media induced super-solution imaging,” J. Opt. 17(2), 025606 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Nano Lett. (3)

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband Plasmonic Microlenses Based on Patches of Nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

X. B. Ji, X. F. Zang, Z. Li, C. Shi, L. Chen, B. Cai, and Y. M. Zhu, “Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics,” Opt. Commun. 342, 193–198 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of two coupled nanoslits in a 400 nm thick gold film.
Fig. 2
Fig. 2 Effect of slit-2 on the phase delay of slit-1. The gold spacing s is 30 nm. The width of slit-2 ranges from 10 nm to 100 nm. The phase delay of slit-1 with variant widths displays different trends as a function of the width of slit-2. The narrower the slit-1, the greater the effect of slit-2 on its phase delay. In the cases of w 1 = 10, 20 nm, the phase delay of π and -π denote the two kinds of abnormal optical transmission in the nanoslit: backward propagation at the exit and local interruption, respectively.
Fig. 3
Fig. 3 The Poynting vector in the two nanoslits and the gold wall between them is 30 nm. (a) w 1 = 20 nm, w 2 = 40 nm. Light in slit-1 propagates backwards at the exit of the structure. (b) w 1 = 20 nm, w 2 = 30 nm. Light can normally pass through slit-1. (c) w 1 = 10 nm, w 2 = 20 nm. The optical transmission in slit-1 is locally off.
Fig. 4
Fig. 4 Change of the phase delay of slit-1 with the gold spacing between slit-1 and slit-2. w 1 = 10 nm, w 2 = 60 nm. The phase delay of π denotes the optical transmission is locally off, similar to Fig. 3(c).
Fig. 5
Fig. 5 Simulated magnetic field distributions of Re(Hz ) in slit-1, slit-2 and the central gold wall for different spacings. w 1 = 10 nm, w 2 = 60 nm. (a) s = 10 nm. (b) s = 60 nm. (c) s = 300 nm.
Fig. 6
Fig. 6 Dependence of phase delay on the nanoslit width. Gold spacings are 10 nm, 30 nm, and 60 nm. The thickness t of the gold film is 400 nm.
Fig. 7
Fig. 7 Comparison between the simulated and required phase delay differences at the positions where nanoslits are located. The actual phase delay designed for the optimized metallic lens matches much better with the requirement than that for the original lens.
Fig. 8
Fig. 8 The optimized metallic planar lens for the designed focal length f = 0.3 µm. (a) The half geometry of the lens formed by a gold film (yellow) with an array of coupled air nanoslits on a glass substrate. Beginning from y = 0, the width sequence of nanoslits is: 20, 20, 22, 24, 26, 34, 84, 10, 10, 10, 10, 10, 10, 12, 14, 16, 32 nm and the corresponding spacing sequence of gold walls is: 30, 30, 30, 30, 30, 30, 60, 46, 40, 36, 30, 30, 30, 30, 30, 60 nm. (b) Magnetic field distribution of Re(Hz ) and (c) magnetic intensity pattern. The dashed white line is the exit surface of the lens. (d) The derived |Hz |2 at the focal plane.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ m = 1 k 0 | ε m + ε d ε m 2 | 1 2
cos ( w k 1 ) cos ( s k 2 ) ε m 2 k 1 2 + k 2 2 2 ε m k 1 k 2 sin ( w k 1 ) sin ( s k 2 ) = 1
tan h ( w β 2 k 0 2 2 ) = β 2 k 0 2 ε m ε m β 2 k 0 2
Δ φ ( y ) Δ φ ( 0 ) = 2 n π + 2 π f λ 0 2 π f 2 + y 2 λ 0

Metrics