Abstract

A calculation based on surface plasmon coupling condition and Maxwell-Garnett equation was performed for predicting the coupling angle shift and thin film thickness in scanning surface plasmon microscopy (SSPM). The refractive index sensitivity and lateral resolution of an SSPM system was also investigated. The limit of detection of angle shift was 0.01°, the limit of quantification of angle shift was 0.03°, and the sensitivity was around 0.12° shift per nm ZnO film when the film thickness was less than 22.6 nm. Two partially connected Au nano-discs with a center-to-center distance of 1.1 μm could be identified as two peaks. The system was applied to image nanostructure defects and a virus-probe functionalized nanoarray. We expect the potential application in nanobiosensors with further optimization in the future.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts

L. Malic, B. Cui, T. Veres, and M. Tabrizian
Opt. Lett. 32(21) 3092-3094 (2007)

Nanoimprinted plastic substrates for enhanced surface plasmon resonance imaging detection

Lidija Malic, Bo Cui, Maryam Tabrizian, and Teodor Veres
Opt. Express 17(22) 20386-20392 (2009)

Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy

Ruei-Yu He, Chun-Yu Lin, Yuan-Deng Su, Kuo-Chih Chiu, Nan-Shan Chang, Hua-Lin Wu, and Shean-Jen Chen
Opt. Express 18(4) 3649-3659 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  2. W. Hickel and W. Knoll, “Surface plasmon microscopic imaging of ultrathin metal coatings,” Acta Metall. 37(8), 2141–2144 (1989).
    [Crossref]
  3. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
    [Crossref]
  4. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
    [Crossref] [PubMed]
  5. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
    [Crossref]
  6. K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [Crossref] [PubMed]
  7. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
    [Crossref] [PubMed]
  8. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [Crossref]
  9. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [Crossref] [PubMed]
  10. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]
  11. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46(22), 4985–4990 (2007).
    [Crossref] [PubMed]
  12. G. Terakado, J. Ning, K. Watanabe, and H. Kano, “High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons,” Appl. Opt. 52(14), 3324–3328 (2013).
    [Crossref] [PubMed]
  13. K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, and H. Kano, “Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites,” Biomed. Opt. Express 3(2), 354–359 (2012).
    [Crossref] [PubMed]
  14. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
    [Crossref] [PubMed]
  15. K. Watanabe, M. Ryosuke, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt. 49(5), 887–891 (2010).
    [Crossref] [PubMed]
  16. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
    [Crossref] [PubMed]
  17. C.-H. Sung, D. Chauvat, J. Zyss, and C.-K. Lee, “Enhanced detection of fluorescent nanospheres using two-channel radially polarized surface plasmon microscopy,” Opt. Lett. 35(17), 2873–2875 (2010).
    [Crossref] [PubMed]
  18. J. Elezgaray, L. Berguiga, and F. Argoul, “Plasmon-based tomographic microscopy,” J. Opt. Soc. Am. A 31(1), 155–161 (2014).
    [Crossref] [PubMed]
  19. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1-3), 11–15 (2000).
    [Crossref]
  20. J. Homola, “Electromagnetic theory of surface plasmons,” in Surface plasmon resonance based sensors, J. Homola, ed. (Springer Berlin Heidelberg, 2006), pp. 3–44.
  21. J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 907–917 (2004).
    [Crossref] [PubMed]
  22. T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
    [Crossref] [PubMed]
  23. M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface 4(12), 1–17 (2007).
    [Crossref] [PubMed]
  24. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
    [Crossref]
  25. D.-S. Wang and C.-W. Lin, “Density-dependent optical response of gold nanoparticle monolayers on silicon substrates,” Opt. Lett. 32(15), 2128–2130 (2007).
    [Crossref] [PubMed]
  26. D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
    [PubMed]
  27. A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21 (2011).
    [Crossref]
  28. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34(6), 749–751 (2009).
    [Crossref] [PubMed]
  29. L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
    [Crossref] [PubMed]
  30. A. Vologodskii, Biophysics of DNA (Cambridge University Press, 2015).
  31. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  32. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, and H. Kano, “Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites,” Biomed. Opt. Express 3(2), 354–359 (2012).
[Crossref] [PubMed]

T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
[Crossref] [PubMed]

2011 (1)

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21 (2011).
[Crossref]

2010 (4)

2009 (2)

2008 (2)

K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
[Crossref] [PubMed]

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

2007 (4)

2006 (2)

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[Crossref] [PubMed]

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

2004 (1)

J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 907–917 (2004).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2000 (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1-3), 11–15 (2000).
[Crossref]

1999 (2)

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1998 (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
[Crossref]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

1993 (1)

1989 (1)

W. Hickel and W. Knoll, “Surface plasmon microscopic imaging of ultrathin metal coatings,” Acta Metall. 37(8), 2141–2144 (1989).
[Crossref]

Argoul, F.

Armbruster, D. A.

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

Bastmeyer, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Bechinger, C.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

Berguiga, L.

Bouhelier, A.

Bruyant, A.

Bu, J.

Campbell, C. T.

J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 907–917 (2004).
[Crossref] [PubMed]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Cantor, C. R.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

Chauvat, D.

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Colas des Francs, G.

de Bruijn, H. E.

Dereux, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Elezgaray, J.

Gao, B. Z.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Giebel, K.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Goldberg, B. B.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

Greve, J.

Gupta, V. B.

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21 (2011).
[Crossref]

Herminghaus, S.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Hickel, W.

W. Hickel and W. Knoll, “Surface plasmon microscopic imaging of ultrathin metal coatings,” Acta Metall. 37(8), 2141–2144 (1989).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Horiguchi, N.

Huang, C.

Huang, X.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Ignatovich, F.

Jha, R.

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Kano, H.

Kawata, F.

Kawata, S.

Kitamura, K.

Knoll, W.

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1-3), 11–15 (2000).
[Crossref]

W. Hickel and W. Knoll, “Surface plasmon microscopic imaging of ultrathin metal coatings,” Acta Metall. 37(8), 2141–2144 (1989).
[Crossref]

Kolomenski, A.

Kolomenskii, A.

Kooyman, R. P. H.

Lee, C.-K.

Leiderer, P.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, J.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Lin, C.-W.

T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
[Crossref] [PubMed]

D.-S. Wang and C.-W. Lin, “Density-dependent optical response of gold nanoparticle monolayers on silicon substrates,” Opt. Lett. 32(15), 2128–2130 (2007).
[Crossref] [PubMed]

Lu, H.-H.

T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
[Crossref] [PubMed]

Lu, J.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Matsuura, K.

Mizuguchi, S.

Moh, K. J.

Moiseev, L.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

Morigaki, K.

Nagata, K.

Ning, J.

Noda, S.

Noel, J.

Novotny, L.

Okazaki, T.

Patel, U.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Peng, S.

Pry, T.

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Riedel, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Ryosuke, M.

Sakai, K.

Schuessler, H.

Shan, X.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Sharma, A. K.

Shrivastava, A.

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21 (2011).
[Crossref]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 907–917 (2004).
[Crossref] [PubMed]

Sung, C.-H.

Swan, A. K.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

Tao, N.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Terakado, G.

Unlü, M. S.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

Wang, D.-S.

Wang, S.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Watanabe, K.

Weeber, J. C.

Weiland, U.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Wiederrecht, G. P.

Wood, M. A.

M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface 4(12), 1–17 (2007).
[Crossref] [PubMed]

Wu, T.-H.

T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
[Crossref] [PubMed]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Yuan, X. C.

Zhan, Q.

Zhu, S. W.

Zyss, J.

Acta Metall. (1)

W. Hickel and W. Knoll, “Surface plasmon microscopic imaging of ultrathin metal coatings,” Acta Metall. 37(8), 2141–2144 (1989).
[Crossref]

Anal. Chem. (1)

J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 907–917 (2004).
[Crossref] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (1)

Biophys. J. (1)

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

Chron. Young Sci. (1)

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21 (2011).
[Crossref]

Clin. Biochem. Rev. (1)

D. A. Armbruster and T. Pry, “Limit of blank, limit of detection and limit of quantitation,” Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. R. Soc. Interface (1)

M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface 4(12), 1–17 (2007).
[Crossref] [PubMed]

Langmuir (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

T.-H. Wu, H.-H. Lu, and C.-W. Lin, “Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography,” Langmuir 28(41), 14509–14513 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1-3), 11–15 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006).
[Crossref] [PubMed]

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Other (2)

A. Vologodskii, Biophysics of DNA (Cambridge University Press, 2015).

J. Homola, “Electromagnetic theory of surface plasmons,” in Surface plasmon resonance based sensors, J. Homola, ed. (Springer Berlin Heidelberg, 2006), pp. 3–44.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Radially-polarized illumination was used to locally excite surface plasmon. (a) The schematic diagram of our SSPM. (b) The image of the BFP was acquired for the coupling angle calculation. (c) n eff a is the effective refractive index of the target sample including the deposited material and medium. (LP: linear polarizer, RPC: radial polarization converter, RP: radial polarization, BS: beam splitter, L: lens, OBJ: objective, BFP: back focal plane, BFPI: back focal plane image)
Fig. 2
Fig. 2 The fabrication methods used in this article are illustrated. (a) Thin film was sputtered sequentially to stack ZnO layers with variant thicknesses. (b) MHA ink was written on Au film with DPN for producing the Au nanoarray. (c) Microsphere lithography was performed for making a large area nanoarray. (Unit: nm)
Fig. 3
Fig. 3 (a) The SPR angle shifted with the thickness of the ZnO layer (performed with Macleod. (b) The trend of coupling angle shifts predicted with Macleod, MG model, and the equation published by Jung et al. [24] (c) BFP images with the SPR angles of sample with different ZnO thickness. Region in 10 um2 size was scanned for each sample and calculated the average angle and standard deviation.
Fig. 4
Fig. 4 (a) Nano-disc pairs with gradually decreased center-to-center distances were imaged by SSPM and SEM. (b) The distances between peaks of the intensity profiles of the SSPM image in (a) were measured.
Fig. 5
Fig. 5 The SSPM measured particle distances were compared to the measurement with SEM.
Fig. 6
Fig. 6 A nano-disc array produced by DPN was imaged by SEM (a) and SSPM (b). The SSPM image clearly showed the nanoarray structure and some defects on the SPR chip (c). No.1 is the image of residual Au after etching, and No. 2 is the image of a scratch on the surface.
Fig. 7
Fig. 7 The SSPM image before and after single-strand DNA modification. (HCV probe sequence: 5′-thiol-TATGGCTCTCCCGGGAGGGGTTGCCATGGCGTTAGTATGAGT-3′)
Fig. 8
Fig. 8 (a) The histogram of SPR angle showed a slight right shift after ssDNA modification. (b) The simulation results for ssDNA modification based on Jung et al. and MG model.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sinθ SPR / sinθ max = R SPR / R max .
θ SPR = sin 1 [ ( R SPR / R max )×( NA / n 0 ) ].
β EW = β SP = β SP0 +Δβ .
( 2π λ ) n 0 sin θ SPR =( 2π λ ) n eff SP =( 2π λ ) n eff SP0 +Δβ=( 2π λ ) [ ε eff a ε m / ( ε eff a + ε m ) ] 1/2 +Δβ.
I d =( λ/ 2π )Re { [ n eff a 2 ε m / ( n eff a 2 + ε m ) ] n eff a 2 } 1 /2 =( λ/ 2π )Re { n eff a 4 / ( n eff a 2 + ε m ) } 1 /2 ,
n eff a =( 2/ I d ) 0 n( z ) EXP( 2z / I d )dz,
n eff a = n a [ 1EXP( 2d / I d ) ]+ n s EXP( 2d / I d )= n s +( n a n s )[ 1EXP( 2d / I d ) ],
n eff a = n s +( n a n s )( 2d / I d ).
( ε eff a ε s ) / ( ε eff a +2 ε s ) = V a × ( ε a ε s ) / ( ε a +2 ε s ) ,
V a =d/ I d .

Metrics