Abstract

A novel design of decorating microsphere surface with concentric rings to modulate the photonic nanojet (PNJ) is investigated. By introducing the concentric ring structures into the illumination side of the microspheres, a reduction of the full width at half maximum (FWHM) intensity of the PNJ by 29.1%, compared to that without the decoration, can be achieved numerically. Key design parameters, such as ring number and depth, are analyzed. Engineered microsphere with four uniformly distributed rings etched at a depth of 1.2 μm and width of 0.25 μm can generate PNJ at a FWHM of 0.485 λ (λ = 400nm). Experiments were carried out by direct observation of the PNJ with an optical microscope under 405 nm laser illumination. As a result, shrinking of PNJ beam size of 28.0% compared to the case without the rings has been achieved experimentally. Sharp FWHM of this design can be beneficial to micro/nanoscale fabrication, optical super-resolution imaging, and sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial control of photonic nanojets

Jinlong Zhu and Lynford L. Goddard
Opt. Express 24(26) 30444-30464 (2016)

Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm

Yin Huang, Zhishen Zhen, Yuecheng Shen, Changjun Min, and Georgios Veronis
Opt. Express 27(2) 1310-1325 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  2. M. Bom and E. Wolf, Principles of Optics (Pergamon Oxford, 1980)
  3. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  4. X. Luo and L. Yan, “Surface plasmon polaritons and its applications,” IEEE Photonics J. 4(2), 590–595 (2012).
    [Crossref]
  5. X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China-Phys. Mech. Astron. 58, 094201 (2015).
  6. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  7. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  8. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [Crossref] [PubMed]
  9. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]
  10. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  11. H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
    [Crossref] [PubMed]
  12. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
    [Crossref]
  13. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
    [Crossref]
  14. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [Crossref] [PubMed]
  15. D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
    [Crossref] [PubMed]
  16. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [Crossref] [PubMed]
  17. S. Yang and V. N. Astratov, “Photonic nanojet-inducedmodes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
    [Crossref]
  18. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
    [Crossref] [PubMed]
  19. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
    [Crossref] [PubMed]
  20. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
    [Crossref] [PubMed]
  21. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [Crossref] [PubMed]
  22. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  23. C. Y. Liu and Y. H. Wang, “Real-space observation of photonic nanojet in dielectric microspheres,” Physica E 61, 141–147 (2014).
    [Crossref]
  24. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
    [Crossref]
  25. M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
    [Crossref]
  26. K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
    [Crossref]
  27. S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
    [Crossref]
  28. M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273–2275 (2001).
    [Crossref]
  29. J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
    [Crossref]
  30. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
    [Crossref] [PubMed]
  31. P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
    [Crossref] [PubMed]
  32. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
    [Crossref] [PubMed]
  33. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  34. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  35. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  36. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
    [Crossref] [PubMed]
  37. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [Crossref] [PubMed]
  38. G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
    [Crossref] [PubMed]
  39. S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [Crossref] [PubMed]
  40. Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
    [Crossref] [PubMed]
  41. Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
    [Crossref] [PubMed]
  42. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

2015 (4)

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China-Phys. Mech. Astron. 58, 094201 (2015).

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

2014 (6)

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

C. Y. Liu and Y. H. Wang, “Real-space observation of photonic nanojet in dielectric microspheres,” Physica E 61, 141–147 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

2013 (1)

2012 (2)

X. Luo and L. Yan, “Surface plasmon polaritons and its applications,” IEEE Photonics J. 4(2), 590–595 (2012).
[Crossref]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

2010 (2)

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

2009 (2)

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

2008 (7)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

S. Yang and V. N. Astratov, “Photonic nanojet-inducedmodes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
[Crossref] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

2005 (4)

2004 (2)

2003 (1)

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

2002 (1)

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

2001 (1)

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273–2275 (2001).
[Crossref]

Afonso, C. N.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Astratov, V. N.

S. Yang and V. N. Astratov, “Photonic nanojet-inducedmodes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[Crossref] [PubMed]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Backman, V.

Bäuerle, D.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Boarino, L.

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Bonod, N.

Cai, G.

Cai, Z.

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Challener, W. A.

Chen, Z.

Chong, C. T.

Chong, T. C.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

Constantinescu, C.

Crégut, O.

Cui, X.

De Leo, N.

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Denk, R.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Devilez, A.

Erni, D.

Fanciulli, M.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Ferrand, P.

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Gao, P.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

García De Abajo, F. J.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Geints, Y. E.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Gijs, M. A. M.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Grojo, D.

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Gu, G.

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Guo, H.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Haacke, S.

Hafner, C.

Han, Y.

Heifetz, A.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Hengyu, Z.

Hirlimann, C.

Hong, M.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hong, M. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Huang, S. M.

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Itagi, A. V.

Kapitonov, A. M.

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kong, S. C.

Kong, S.-C.

Kühler, P.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Laus, M.

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Lecler, S.

Lecong, N.

Lee, S.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Leiderer, P.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, X.

Liu, C. Y.

C. Y. Liu and Y. H. Wang, “Real-space observation of photonic nanojet in dielectric microspheres,” Physica E 61, 141–147 (2014).
[Crossref]

Liu, K.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Longo, M.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

Luo, X.

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China-Phys. Mech. Astron. 58, 094201 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

X. Luo and L. Yan, “Surface plasmon polaritons and its applications,” IEEE Photonics J. 4(2), 590–595 (2012).
[Crossref]

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, Y.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Meyrueis, P.

Minghui, H.

Mosbacher, M.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Panina, E. K.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Pereira, A.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Pianta, M.

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Popov, E.

Puerto, D.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

Rehspringer, J.-L.

Rigneault, H.

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Sahakian, A.

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Sandeau, N.

Sentis, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

Shen, J.-T.

Shen, Y.

Shi, L. P.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

Siegel, J.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Solis, J.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

Sparnacci, K.

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Stout, B.

Sui, G.

Sun, Z.

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

Taflove, A.

Takakura, Y.

Wang, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Wang, L. V.

Wang, Y.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[Crossref] [PubMed]

Wang, Y. H.

C. Y. Liu and Y. H. Wang, “Real-space observation of photonic nanojet in dielectric microspheres,” Physica E 61, 141–147 (2014).
[Crossref]

Wang, Z.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Wang, Z. B.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

Weng, X.

Wenger, J.

Whitesides, G. M.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273–2275 (2001).
[Crossref]

Wiemer, C.

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

Wu, M. H.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273–2275 (2001).
[Crossref]

Xu, H.

Yan, L.

X. Luo and L. Yan, “Surface plasmon polaritons and its applications,” IEEE Photonics J. 4(2), 590–595 (2012).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Yang, S.

S. Yang and V. N. Astratov, “Photonic nanojet-inducedmodes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

Yao, N.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zaichun, C.

Zemlyanov, A. A.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Zhao, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhao, Y.

Zhao, Z.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhou, R.

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

Zhuang, S.

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (9)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

S. M. Huang, Z. Sun, B. S. Luk’yanchuk, M. H. Hong, and L. P. Shi, “Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon,” Appl. Phys. Lett. 86(16), 161911 (2005).
[Crossref]

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273–2275 (2001).
[Crossref]

J. Siegel, D. Puerto, J. Solis, F. J. García De Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett. 96(19), 193108 (2010).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88(2), 023110 (2006).
[Crossref]

S. Yang and V. N. Astratov, “Photonic nanojet-inducedmodes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[Crossref]

IEEE Photonics J. (1)

X. Luo and L. Yan, “Surface plasmon polaritons and its applications,” IEEE Photonics J. 4(2), 590–595 (2012).
[Crossref]

J. Opt. (1)

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Opt. Express (10)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
[Crossref] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
[Crossref] [PubMed]

S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[Crossref] [PubMed]

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Physica E (1)

C. Y. Liu and Y. H. Wang, “Real-space observation of photonic nanojet in dielectric microspheres,” Physica E 61, 141–147 (2014).
[Crossref]

Sci. China-Phys. Mech. Astron. (1)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China-Phys. Mech. Astron. 58, 094201 (2015).

Science (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

M. H. Hong, S. M. Huang, B. S. Luk’yanchuk, and T. C. Chong, “Laser assisted surface nanopatterning,” Sens. Actuators A Phys. 108(1-3), 69–74 (2003).
[Crossref]

Small (3)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. N. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small 5(16), 1825–1829 (2009).
[Crossref] [PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

M. Bom and E. Wolf, Principles of Optics (Pergamon Oxford, 1980)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Configuration of the CRMS. (a) Schematic of observing PNJ by an optical microscope. The lens located between the objective lens and CCD represents for the focusing lenses in the optical microscope. (b) top and (c) side views of a 4 ring CRMS.
Fig. 2
Fig. 2 PNJ generated by CRMS with 0 to 6 etched rings on the illumination side of CRMS. (a) Cross-section view of the CRMS; (b)-(d) light intensity distribution of CRMS with 0, 2 and 4 rings in the yz plane; (e) light intensity distribution along y axis at the highest intensity points of the PNJ. (f) Dependence of FWHM and working distance of the PNJ on ring number.
Fig. 3
Fig. 3 FDTD simulation of PNJs generated by CRMS with ring depth changed from 0 to 1.6 μm. (a) - (d): Intensity distribution of CRMS with ring depth of 0, 0.8, 1.2 and 1.6 μm in the yz plane. (e) Comparisons of the intensity along the y axis for different configurations at the highest intensity points of the PNJ. (f) FWHM and working distance versus ring depth.
Fig. 4
Fig. 4 Experimental results of the PNJ generated under 405 nm laser illumination by (a) 4 rings (b) single ring CRMS and (c) microsphere only. 10 raw images of light intensity distribution along z axis for (d) 4 ring microsphere; (e) 1 ring microsphere and (f) microsphere only are listed. The images are taken with a separation of 50 nm in z axis, 10 images are chosen for each configuration to show the change at the focal plane. The intensity distributions along horizontal direction are plotted in (g), (h) and (i), respectively.

Metrics