Abstract

Large-scale integrated silicon photonic circuits suffer from two inevitable issues that boost the overall power consumption. First, fabrication imperfections even on sub-nm scale result in spectral device non-uniformity that require fine-tuning during device operation. Second, the photonic devices need to be actively corrected to compensate thermal drifts. As a result significant amount of power is wasted if no athermal and wavelength-trimmable solutions are utilized. Consequently, in order to minimize the total power requirement of photonic circuits in a passive way, trimming methods are required to correct the device inhomogeneities from manufacturing and athermal solutions are essential to oppose temperature fluctuations of the passive/active components during run-time. We present an approach to fabricate CMOS backend-compatible and athermal passive photonic filters that can be corrected for fabrication inhomogeneities by UV-trimming based on low-loss amorphous-SOI waveguides with TiO2 cladding. The trimming of highly confined 10 μm ring resonators is proven over a free spectral range retaining athermal operation. The athermal functionality of 2nd-order 5 μm add/drop microrings is demonstrated over 40°C covering a broad wavelength interval of 60 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic integrated circuit components based on amorphous silicon-on-insulator technology

Timo Lipka, Lennart Moldenhauer, Jörg Müller, and Hoc Khiem Trieu
Photon. Res. 4(3) 126-134 (2016)

Hydrogenated amorphous silicon photonic device trimming by UV-irradiation

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller
Opt. Express 22(10) 12122-12132 (2014)

Thermal stress implications in athermal TiO2 waveguides on a silicon substrate

Jock Bovington, Rui Wu, Kwang-Ting Cheng, and John E. Bowers
Opt. Express 22(1) 661-666 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1, 153–155 (2007).
    [Crossref]
  2. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
    [Crossref]
  3. M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  4. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
    [Crossref] [PubMed]
  5. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
    [Crossref] [PubMed]
  7. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
    [Crossref]
  8. X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
    [Crossref] [PubMed]
  9. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref] [PubMed]
  10. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
    [Crossref]
  11. Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
    [Crossref]
  12. A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-Efficient Photonics in Future High-Connectivity Computing Systems,” J. Lightwave Technol. 33(4), 889–900 (2015).
    [Crossref]
  13. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  14. Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996).
    [Crossref]
  15. W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
    [Crossref]
  16. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  17. M. M. Milosevic, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
    [Crossref] [PubMed]
  18. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [Crossref] [PubMed]
  19. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  20. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  21. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
    [Crossref] [PubMed]
  22. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36(14), 2668–2670 (2011).
    [Crossref] [PubMed]
  23. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
    [Crossref] [PubMed]
  24. J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19(13), 11969–11976 (2011).
    [Crossref] [PubMed]
  25. D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21(9), 11048–11056 (2013).
    [Crossref] [PubMed]
  26. T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
    [Crossref] [PubMed]
  27. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [Crossref] [PubMed]
  28. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
    [Crossref] [PubMed]
  29. L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
    [Crossref]
  30. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Y. Jen, “Trimming of high-q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
    [Crossref] [PubMed]
  31. M. Erdmanis, L. Karvonen, M. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “Ald-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30(15), 2488–2493 (2012).
    [Crossref]
  32. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  33. J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22(3), 3145–3150 (2014).
    [Crossref] [PubMed]
  34. J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Adiabatically widened silicon microrings for improved variation tolerance,” Opt. Express 22(8), 9659–9666 (2014)
    [Crossref] [PubMed]
  35. K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
    [Crossref]
  36. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [Crossref] [PubMed]
  37. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
    [Crossref] [PubMed]
  38. L. Chen, M. G. Wood, and R. M. Reano, “Compensating thermal drift of hybrid silicon and lithium niobate ring resonances,” Opt. Lett. 40(7), 1599–1602 (2015).
    [Crossref] [PubMed]
  39. S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38(24), 5450–5453 (2013).
    [Crossref] [PubMed]
  40. A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
    [Crossref]
  41. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
    [Crossref]
  42. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
    [Crossref]
  43. J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5μm-radius ring resonator,” Opt. Comm. 338, 101–105 (2015).
    [Crossref]
  44. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [Crossref] [PubMed]
  45. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [Crossref] [PubMed]
  46. J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
    [Crossref]
  47. Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
    [Crossref]
  48. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  49. M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.
  50. D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
    [Crossref]
  51. T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
    [Crossref]
  52. L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20(5), 5789–5801 (2012).
    [Crossref] [PubMed]
  53. K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
    [Crossref]
  54. A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
    [Crossref]
  55. T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
    [Crossref]
  56. C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
    [Crossref] [PubMed]
  57. J. Bovington, R. Wu, K. T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
    [Crossref] [PubMed]
  58. L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
    [Crossref]
  59. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20(18), 20564–20575 (2012).
    [Crossref] [PubMed]
  60. T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
    [Crossref]
  61. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [Crossref] [PubMed]
  62. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
    [Crossref] [PubMed]
  63. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlowe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [Crossref]
  64. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
    [Crossref] [PubMed]
  65. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
    [Crossref] [PubMed]
  66. J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014).
    [Crossref] [PubMed]
  67. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
    [Crossref]
  68. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  69. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
    [Crossref]
  70. G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
    [Crossref] [PubMed]
  71. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [Crossref]
  72. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
    [Crossref] [PubMed]
  73. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
    [Crossref] [PubMed]
  74. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 db/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
    [Crossref] [PubMed]
  75. T. Lipka, J. Amthor, and J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Photonics Conference (IPC), 2012 IEEE (2012), pp. 923–924.
    [Crossref]
  76. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
    [Crossref]
  77. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
    [Crossref] [PubMed]
  78. H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
    [Crossref]
  79. J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
    [Crossref]
  80. J. T. Bessette and D. Ahn, “Vertically stacked microring waveguides for coupling between multiple photonic planes,” Opt. Express 21(11), 13580–13591 (2013).
    [Crossref] [PubMed]
  81. Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
    [Crossref]
  82. S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon,” Nanophotonics 4(1), 143–164 (2015).
    [Crossref]
  83. F. G. Della Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
    [Crossref]
  84. Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
    [Crossref] [PubMed]
  85. S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
    [Crossref]
  86. Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200–8207 (2013).
    [Crossref]
  87. H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
    [Crossref]
  88. A. Melikyan, K. Koehnle, M. Lauermann, R. Palmer, S. Koeber, S. Muehlbrandt, P. C. Schindler, D. L. Elder, S. Wolf, W. Heni, C. Haffner, Y. Fedoryshyn, D. Hillerkuss, M. Sommer, L. R. Dalton, D. Van Thourhout, W. Freude, M. Kohl, J. Leuthold, and C. Koos, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40Gbit/s,” Opt. Express 23(8), 9938–9946 (2015).
    [Crossref] [PubMed]
  89. C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
    [Crossref]
  90. C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
    [Crossref] [PubMed]

2015 (8)

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5μm-radius ring resonator,” Opt. Comm. 338, 101–105 (2015).
[Crossref]

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon,” Nanophotonics 4(1), 143–164 (2015).
[Crossref]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-Efficient Photonics in Future High-Connectivity Computing Systems,” J. Lightwave Technol. 33(4), 889–900 (2015).
[Crossref]

L. Chen, M. G. Wood, and R. M. Reano, “Compensating thermal drift of hybrid silicon and lithium niobate ring resonances,” Opt. Lett. 40(7), 1599–1602 (2015).
[Crossref] [PubMed]

A. Melikyan, K. Koehnle, M. Lauermann, R. Palmer, S. Koeber, S. Muehlbrandt, P. C. Schindler, D. L. Elder, S. Wolf, W. Heni, C. Haffner, Y. Fedoryshyn, D. Hillerkuss, M. Sommer, L. R. Dalton, D. Van Thourhout, W. Freude, M. Kohl, J. Leuthold, and C. Koos, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40Gbit/s,” Opt. Express 23(8), 9938–9946 (2015).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
[Crossref] [PubMed]

2014 (15)

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

J. Bovington, R. Wu, K. T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[Crossref] [PubMed]

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
[Crossref]

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014).
[Crossref] [PubMed]

J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22(3), 3145–3150 (2014).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 db/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
[Crossref] [PubMed]

J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Adiabatically widened silicon microrings for improved variation tolerance,” Opt. Express 22(8), 9659–9666 (2014)
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
[Crossref] [PubMed]

2013 (11)

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21(9), 11048–11056 (2013).
[Crossref] [PubMed]

J. T. Bessette and D. Ahn, “Vertically stacked microring waveguides for coupling between multiple photonic planes,” Opt. Express 21(11), 13580–13591 (2013).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
[Crossref] [PubMed]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38(24), 5450–5453 (2013).
[Crossref] [PubMed]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200–8207 (2013).
[Crossref]

F. G. Della Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

2012 (16)

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20(5), 5789–5801 (2012).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
[Crossref] [PubMed]

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
[Crossref] [PubMed]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Y. Jen, “Trimming of high-q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
[Crossref] [PubMed]

M. Erdmanis, L. Karvonen, M. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “Ald-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30(15), 2488–2493 (2012).
[Crossref]

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20(18), 20564–20575 (2012).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

2011 (8)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19(13), 11969–11976 (2011).
[Crossref] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36(14), 2668–2670 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlowe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

M. M. Milosevic, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
[Crossref] [PubMed]

2010 (7)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[Crossref] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
[Crossref] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
[Crossref] [PubMed]

2009 (7)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
[Crossref] [PubMed]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

2008 (6)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (2)

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[Crossref]

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

2004 (1)

1998 (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

1996 (2)

1984 (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Aboketaf, A.

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Ackert, J.

Ackert, J. J.

Adibi, A.

Adikaari, A. A. D. T.

Agarwal, A.

Ahn, C. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Ahn, D.

Akella, V.

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1, 153–155 (2007).
[Crossref]

Almeida, V. R.

Amemiya, T.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Amthor, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
[Crossref]

T. Lipka, J. Amthor, and J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Photonics Conference (IPC), 2012 IEEE (2012), pp. 923–924.
[Crossref]

Arai, S.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Asghari, M.

Atabaki, A. H.

Atsumi, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Bachman, D.

Baets, R.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlowe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

Barwicz, T.

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.

Basak, J.

Basov, D. N.

Beals, M.

Beausoleil, R. G.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

Ben Bakir, B.

Bergman, K.

Bessette, J. T.

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[Crossref] [PubMed]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Bovington, J.

Bowers, J. E.

Canciamilla, A.

Cardenas, J.

Carletti, L.

Chen, C. J.

Chen, L.

Chen, X.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

M. M. Milosevic, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
[Crossref] [PubMed]

Chen, Z.

Cheng, J.

Cheng, K. T.

Cheung, S. T. S.

Chong, F. T.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Clemmen, S.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

Coppola, G.

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

Cox, J. A.

Cunningham, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Cunningham, J. E.

Dai, D.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Dalton, L. R.

Darmawan, S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Della Corte, F. G.

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

F. G. Della Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

Di Cioccio, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Ding, D.

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Dionne, J.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Divliansky, I. B.

Djordjevic, S. S.

Dong, P.

Doylend, J. K.

Dudley, E.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Eftekhar, A. A.

Eich, M.

Elder, D. L.

Elshaari, A. W.

Emerson, N. G.

Emplit, P.

Endo, T.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Erdmanis, M.

Evans, C. C.

Fan, L.

Fang, Q.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Fathpour, S.

S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon,” Nanophotonics 4(1), 143–164 (2015).
[Crossref]

Fattal, D.

Fattal, D. A.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Fedeli, J. M.

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Fedoryshyn, Y.

Fedosejevs, R.

Feng, D.

Fontaine, N. K.

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Foster, A. C.

Freude, W.

Furuya, K.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Galili, M.

Gardes, F. Y.

Gorza, S.-P.

Grillanda, S.

Grillet, C.

Grosse, P.

Gu, T.

Guan, B.

Guha, B.

Haffner, C.

Han, X.

Harke, A.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[Crossref]

Hasama, T.

Haus, H. A.

Hayashi, Y.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Heni, W.

Hiidome, K.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Hillerkuss, D.

Hilterhaus, L.

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-Efficient Photonics in Future High-Connectivity Computing Systems,” J. Lightwave Technol. 33(4), 889–900 (2015).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Hong, C.

Honkanen, S.

Horn, O.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

Hu, H.

Ikeda, N.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Ippen, E. P.

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.

Ishikawa, H.

Ito, Y.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Jen, A. K. Y.

Jeppesen, P.

Jessop, P. E.

Ji, H.

Jia, L.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Jian, X.

Joseph, R.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Kamei, T.

Kang, J.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Kang, J. H.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Kärtner, F. X.

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.

Karvonen, L.

Kashiwagi, K.

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Katsuyama, T.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Kawashima, H.

Keyvaninia, S.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Kiepsch, M.

Kimerling, L.

Kimerling, L. C.

Kintaka, K.

Kitamura, S.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Knights, A.

Knights, A. P.

Koeber, S.

Koehnle, K.

Kohl, M.

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Kokubun, Y.

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996).
[Crossref]

Koos, C.

Krause, M.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[Crossref]

Krishnamoorthy, A. V.

Krueckel, C.

T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
[Crossref]

Kumah, D.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Kuno, Y.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Kuyken, B.

Kwong, D. L.

Kwong, D.-L.

Lauermann, M.

Lee, J.-M.

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5μm-radius ring resonator,” Opt. Comm. 338, 101–105 (2015).
[Crossref]

Lee, Y. H. D.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200–8207 (2013).
[Crossref]

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
[Crossref] [PubMed]

Lentine, A. L.

Leo, F.

Leuthold, J.

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, Y.

Li, Z.

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Liang, C.

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Liang, H.

Liao, L.

Lipka, T.

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
[Crossref] [PubMed]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
[Crossref]

T. Lipka, J. Amthor, and J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Photonics Conference (IPC), 2012 IEEE (2012), pp. 923–924.
[Crossref]

Lipson, M.

Liu, C.

Liu, H. F.

Liu, Y.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Lo, G.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Logan, D.

Logan, D. F.

Luo, J.

Luo, X.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Luo, Y.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Manako, S.

Mandorlo, F.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Manipatruni, S.

Marris-Morini, D.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Mashanovich, G.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Mashanovich, G. Z.

Massar, S.

McMillan, J. F.

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Melikyan, A.

Melloni, A.

Menezo, S.

Meng, K.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Michel, J.

Mickelson, A. R.

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Mikkelsen, J. C.

Milosevic, M. M.

Minarini, C.

Mohamed, M.

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Monat, C.

Mookherjea, S.

Mori, M.

Morichetti, F.

Morita, M.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Morthier, G.

Moss, D. J.

Motooka, T.

Muehlbrandt, S.

Müller, J.

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
[Crossref] [PubMed]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[Crossref]

T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
[Crossref]

T. Lipka, J. Amthor, and J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Photonics Conference (IPC), 2012 IEEE (2012), pp. 923–924.
[Crossref]

Nakanishi, K.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Narayanan, K.

Nedeljkovic, M.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Ngai, J. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Nishiyama, N.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Niu, B.

Oda, M.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Ogasawara, T.

Okada, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Okamoto, K.

L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Okano, M.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[Crossref] [PubMed]

Omoda, E.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 db/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
[Crossref] [PubMed]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Orobtchouk, R.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Oxenlowe, L.

Padmaraju, K.

Pale, V.

Palmer, R.

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1, 153–155 (2007).
[Crossref]

Pelc, J. S.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Petrov, A. Y.

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Pomerene, A.

Poon, A. W.

Poon, J. K. S.

Popovic, M. A.

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.

Preble, S.

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Preble, S. F.

Preston, K.

Prorok, S.

Pu, M.

Qi, M.

Qian, W.

Raghunathan, V.

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Rao, S.

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

F. G. Della Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

Reano, R. M.

Reed, G.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Reiner, J. W.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

Rivoire, K.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Roelkens, G.

Rojo-Romeo, P.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

Ruoho, M.

Sacher, W. D.

Safioui, J.

Saiki, K.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Sakakibara, Y.

Saleem, M.

Santori, C.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Savov, A.

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Schindler, P. C.

Schmid, J.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Schmidt, B.

Schrauwen, J.

Schwartz, B.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-Efficient Photonics in Future High-Connectivity Computing Systems,” J. Lightwave Technol. 33(4), 889–900 (2015).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Scott, R. P.

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Seassal, C.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Selvaraja, S.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Selvaraja, S. K.

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlowe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Shafiiha, R.

Shakya, J.

Shang, K.

Shang, L.

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
[Crossref] [PubMed]

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Shen, Y.

Sherwood, T.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Shiraishi, T.

Shoji, Y.

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Singh, V.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Sommer, M.

Song, J.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Sorel, M.

Starbuck, A. L.

Suda, S.

Sugimoto, Y.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Summonte, C.

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

Sun, R.

Sun, Y.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Suntivich, J.

Suzuki, J.

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Suzuki, M.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Takagi, H.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Takei, R.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 db/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
[Crossref] [PubMed]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Tanaka, H.

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Taubenblatt, M.

Teng, J.

Tervonen, A.

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Theogarajan, L.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Thompson, M. O.

Thomson, D.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Tittonen, I.

Tiwari, M.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Tjahjana, L.

Tobing, L. Y. M.

Tokuda, M.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Tokumaru, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Tokushige, H.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Trieu, H. K.

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
[Crossref] [PubMed]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

Trotter, D. C.

Tsui, Y. Y.

Tsutsui, K.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Uenuma, M.

Vachharajani, M.

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

Vafaei, R.

Valamehr, J. K.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Van, V.

Van Thourhout, D.

A. Melikyan, K. Koehnle, M. Lauermann, R. Palmer, S. Koeber, S. Muehlbrandt, P. C. Schindler, D. L. Elder, S. Wolf, W. Heni, C. Haffner, Y. Fedoryshyn, D. Hillerkuss, M. Sommer, L. R. Dalton, D. Van Thourhout, W. Freude, M. Kohl, J. Leuthold, and C. Koos, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40Gbit/s,” Opt. Express 23(8), 9938–9946 (2015).
[Crossref] [PubMed]

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Varghese, L. T.

Velha, P.

Vivien, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Vo, S.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

Wada, Y.

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Wahn, L.

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

Walker, F. J.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Wang, J.

Wang, K.-Y.

Wang, Z.

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Wassel, H. M. G.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Watts, M. R.

Wolf, S.

Wong, C. W.

Wood, M. G.

Wu, R.

Xiong, C.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Xu, D. X.

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Xu, Q.

Xuan, Y.

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Ye, W.

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Yegnanarayanan, S.

Yoneda, S.

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996).
[Crossref]

Yoo, S.

L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Yoo, S. J. B.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Yu, M.

Zhang, D. H.

Zhang, H.

Zhao, M.

Zheng, J.

Zheng, X.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-Efficient Photonics in Future High-Connectivity Computing Systems,” J. Lightwave Technol. 33(4), 889–900 (2015).
[Crossref]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Zhou, L.

L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Zhu, S. Y.

Zortman, W. A.

Adv. Opt. Technol. (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95(4), 1101–1109 (2009).
[Crossref]

Appl. Phys. Express (1)

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Appl. Phys. Lett. (1)

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Electron. Lett. (2)

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[Crossref]

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996).
[Crossref]

IEEE J. Emer. Sel. Top. Circuits Systems (1)

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200–8207 (2013).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

D. X. Xu, J. Schmid, G. Reed, G. Mashanovich, D. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[Crossref]

IEEE Photon. J. (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3(3), 567–579 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (5)

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

L. Zhou, K. Okamoto, and S. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous silicon 3-d tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding SiO2 membrane systems for thermo-optic adjusting of SOI photonic wires,” IEEE Photon. Technol. Lett. 23(16), 1142–1144 (2011).
[Crossref]

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

IEEE Trans. Electron. Dev. (1)

F. G. Della Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

IEEE Trans. Very Large Scale Integr.(VLSI) Syst. (1)

Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability Modeling and Management of Nanophotonic On-Chip Networks,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 20(1), 98–111 (2012).
[Crossref]

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

J. Eur. Opt. Soc. Rap. Publicat. (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012).
[Crossref]

J. Lightwave Technol. (5)

J. of Nanophoton. (1)

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. of Nanophoton. 7(1), 073793 (2013).
[Crossref]

J. Opt. (1)

S. Rao, G. Coppola, C. Summonte, and F. G. Della Corte, “Progress towards a high-performing a-Si:H-based electro-optic modulator,” J. Opt. 16(5), 055501 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

Y. Kuno, J. H. Kang, Y. Hayashi, J. Suzuki, T. Amemiya, N. Nishiyama, and S. Arai, “Design of apodized hydrogenated amorphous silicon grating couplers with metal mirrors for inter-layer signal coupling: Toward three-dimensional optical interconnection,” Jpn. J. Appl. Phys. 54, 04DG04 (2015).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12), 120208 (2011).
[Crossref]

Laser & Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon,” Nanophotonics 4(1), 143–164 (2015).
[Crossref]

Nat. Photonics (1)

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1, 153–155 (2007).
[Crossref]

Opt. Comm. (1)

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5μm-radius ring resonator,” Opt. Comm. 338, 101–105 (2015).
[Crossref]

Opt. Commun. (2)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

C. Liang, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H) - LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Opt. Express (35)

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 18(4), 3797–3810 (2014).
[Crossref]

J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014).
[Crossref] [PubMed]

J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22(3), 3145–3150 (2014).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 db/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
[Crossref] [PubMed]

J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Adiabatically widened silicon microrings for improved variation tolerance,” Opt. Express 22(8), 9659–9666 (2014)
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by UV-irradiation,” Opt. Express 22(10), 12122–12132 (2014).
[Crossref] [PubMed]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref] [PubMed]

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20(18), 20564–20575 (2012).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21(9), 11048–11056 (2013).
[Crossref] [PubMed]

J. T. Bessette and D. Ahn, “Vertically stacked microring waveguides for coupling between multiple photonic planes,” Opt. Express 21(11), 13580–13591 (2013).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
[Crossref] [PubMed]

L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20(5), 5789–5801 (2012).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[Crossref] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
[Crossref] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
[Crossref] [PubMed]

J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, L. Chrostowski, and A. P. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19(13), 11969–11976 (2011).
[Crossref] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlowe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
[Crossref] [PubMed]

A. Melikyan, K. Koehnle, M. Lauermann, R. Palmer, S. Koeber, S. Muehlbrandt, P. C. Schindler, D. L. Elder, S. Wolf, W. Heni, C. Haffner, Y. Fedoryshyn, D. Hillerkuss, M. Sommer, L. R. Dalton, D. Van Thourhout, W. Freude, M. Kohl, J. Leuthold, and C. Koos, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40Gbit/s,” Opt. Express 23(8), 9938–9946 (2015).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
[Crossref] [PubMed]

J. Bovington, R. Wu, K. T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[Crossref] [PubMed]

Opt. Lett. (11)

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Y. Jen, “Trimming of high-q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
[Crossref] [PubMed]

M. M. Milosevic, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “Compensating thermal drift of hybrid silicon and lithium niobate ring resonances,” Opt. Lett. 40(7), 1599–1602 (2015).
[Crossref] [PubMed]

S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38(24), 5450–5453 (2013).
[Crossref] [PubMed]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36(14), 2668–2670 (2011).
[Crossref] [PubMed]

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
[Crossref] [PubMed]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
[Crossref] [PubMed]

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
[Crossref] [PubMed]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
[Crossref] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

Photonics Nanostruct. (1)

H. Tokushige, T. Endo, K. Saiki, K. Hiidome, S. Kitamura, T. Katsuyama, M. Tokuda, H. Takagi, M. Morita, Y. Ito, K. Tsutsui, Y. Wada, N. Ikeda, and Y. Sugimoto, “Amorphous Si waveguides with high-quality stacked gratings for multi-layer Si optical circuits,” Photonics Nanostruct. 12(5), 501–507 (2014).
[Crossref]

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[Crossref] [PubMed]

Other (3)

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability,” in Technical Digest (CD)(Optical Society of America, Long Beach, California (2006), pp. CTuCC1.

T. Lipka, J. Amthor, C. Krueckel, and J. Müller, “High q-factor hydrogenated amorphous silicon microdisk resonators,” in Opto-Electronics and Communications Conference (OECC), 2012 17th (2012), pp. 873–874.
[Crossref]

T. Lipka, J. Amthor, and J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Photonics Conference (IPC), 2012 IEEE (2012), pp. 923–924.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical simulations of the athermal photonic wires: (a) Guided mode index and temperature sensitivity. (b) Resonance wavelength shift of conventional SiO2- and athermal TiO2-cladded resonators over temperature with a mode simulation inset.
Fig. 2
Fig. 2 Comparison of TiO2- and SiO2-cladded microring resonators: (a) TiO2- and (b) SiO2-cladded notch filters with Lorentz fits inset. (c) TiO2-cladded and (d) SiO2-cladded add/drop resonators.
Fig. 3
Fig. 3 (a) UV-trimming and optical measurement setup. Athermal photonic devices: (b) 10 μm radius add/drop MRR. (c) Add/drop dual-ring resonator with 5 μm radius.
Fig. 4
Fig. 4 (a) MRR drop port spectra of an add/drop filter with TiO2 cladding over a 10°C temperature range. (b) MRR through port spectra over ΔT = 10°C with SiO2 cladding. (c) TDWS comparison of SiO2- and TiO2-cladded waveguides.
Fig. 5
Fig. 5 Close-up view of the dual-microring spectra showing athermal functionality over a temperature range of ΔT = 40°C and Δλ ≥ 60 nm wavelength interval. The spectra belong to the same device and are spaced by the FSR for a better visibility.
Fig. 6
Fig. 6 (a) Athermal operation of an add/drop resonator after UV-trimming the device spectra by ≈ 100 GHz steps at T = 30°C. (b) Measured resonance peak positions (markers) that shift to shorter wavelength due to the trimming procedure. (c) A close-up view of a resonance peak blue-shifted over one FSR.

Tables (2)

Tables Icon

Table 1 Refractive indices, thermo-optic coefficients, and simulated confinement factors of 480 × 200 nm2 a-SOI photonic wires with 400 nm TiO2 and SiO2 () top cladding. References that support these data are provided.

Tables Icon

Table 2 Measured microring resonator key metrics for a-SOI photonic wires with a 400 nm TiO2 and a 1μm SiO2 top cladding.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d n eff d T ( λ ) = i = 1 3 Γ i ( λ ) d n i d T ( λ ) = 0 ,
Δ λ res Δ T = λ n gr ( d n eff d T + α Si n eff ) .

Metrics