Abstract

Abstract: Large-area manufacturing surfaces containing micro- and nano-scale features and large-view biomedical targets motivate the development of large-area, high-resolution and high-speed imaging systems. Compared to constant linear velocity scans and raster scans, constant angular velocity scans can significantly attenuate transient behavior while increasing the speed of imaging. In this paper, we theoretically analyze and evaluate the speed, acceleration and jerks of concentric circular trajectory sampling (CCTS). We then present a CCTS imaging system that demonstrates less vibration and lower mapping errors than raster scanning for creating a Cartesian composite image, while maintaining comparably fast scanning speed for large scanning area.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling

Oscar M. Carrasco-Zevallos, Christian Viehland, Brenton Keller, Ryan P. McNabb, Anthony N. Kuo, and Joseph A. Izatt
Biomed. Opt. Express 9(10) 5052-5070 (2018)

Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

Thomas J. Allen, Olumide Ogunlade, Edward Zhang, and Paul C. Beard
Biomed. Opt. Express 9(2) 650-660 (2018)

Digital micromirror device based ophthalmoscope with concentric circle scanning

Mathi Damodaran, Kari V. Vienola, Boy Braaf, Koenraad A. Vermeer, and Johannes F. de Boer
Biomed. Opt. Express 8(5) 2766-2780 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
    [Crossref]
  2. K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
    [Crossref]
  3. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
    [Crossref] [PubMed]
  4. S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
    [Crossref]
  5. A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
    [Crossref] [PubMed]
  6. H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Eng. 54(2), 025114 (2015).
    [Crossref]
  7. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [Crossref]
  8. A. J. Fleming and K. K. Leang, “An experimental comparison of PI, inversion, and damping control for high performance nanopositioning,” in American Control Conference (ACC) (2013), pp. 6027–6032.
    [Crossref]
  9. K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators,” IEEE Trans. Control Syst. Tech. 15(5), 927–935 (2007).
    [Crossref]
  10. A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).
  11. B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).
  12. G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
    [Crossref]
  13. I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
    [Crossref]
  14. Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
    [Crossref] [PubMed]
  15. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
    [Crossref] [PubMed]
  16. X. Du, N. Kojimoto, and B. W. Anthony, “Concentric circular trajectory sampling for super-resolution and image mosaicing,” J. Opt. Soc. Am. A 32(2), 293–304 (2015).
    [Crossref]
  17. K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
    [Crossref]
  18. M. Irani and S. Peleg, “Improving resolution by image registration,” Graph. Models Image Proc. 53(3), 231–239 (1991).
    [Crossref]
  19. A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. I-645–I-650.
  20. D. P. Capel, Image mosaicing and super-resolution (Springer Science & Business Media, 2004).
  21. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [Crossref]
  22. D. M. Ljubicic, High Speed Instrumentation for Inspection of transparent parts, Doctoral dissertation, (Massachusetts Institute of Technology, 2013).
  23. http://www.appliedimage.com .
  24. E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities (Morgan Kauffman Publishers, 2005).

2015 (2)

2014 (1)

G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
[Crossref]

2013 (3)

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

2012 (3)

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

2011 (1)

I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

2010 (2)

Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
[Crossref] [PubMed]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

2007 (2)

S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
[Crossref]

K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators,” IEEE Trans. Control Syst. Tech. 15(5), 927–935 (2007).
[Crossref]

2005 (1)

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

2004 (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

2003 (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

1991 (1)

M. Irani and S. Peleg, “Improving resolution by image registration,” Graph. Models Image Proc. 53(3), 231–239 (1991).
[Crossref]

Ahnood, A.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Amaratunga, G. A.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Amerongen, J. V.

B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).

Andrew, P.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Anthony, B. W.

Babakhani, B.

B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).

Bhikkaji, B.

I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Bonaccorso, F.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Chau, F. S.

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

Cheo, K. K. L.

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

Chu, D. P.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Cole, M. T.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Coskun, A. F.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Devasia, S.

S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
[Crossref]

K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators,” IEEE Trans. Control Syst. Tech. 15(5), 927–935 (2007).
[Crossref]

Du, X.

Du, Y.

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

Dyadyusha, A.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Eielsen, A. A.

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

Eleftheriou, E.

S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
[Crossref]

Ferrari, A. C.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Fleming, A. J.

A. J. Fleming and K. K. Leang, “An experimental comparison of PI, inversion, and damping control for high performance nanopositioning,” in American Control Conference (ACC) (2013), pp. 6027–6032.
[Crossref]

Flewitt, A. J.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Garcia-Gancedo, L.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Göröcs, Z.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Gravdahl, J. T.

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

Greenbaum, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Gu, G. Y.

G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
[Crossref]

Haque, S.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Hasan, T.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Hiralal, P.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Hofmann, S.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Huang, Y.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Irani, M.

M. Irani and S. Peleg, “Improving resolution by image registration,” Graph. Models Image Proc. 53(3), 231–239 (1991).
[Crossref]

Isikman, S. O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Jain, K.

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Kartik, V.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Kelly, M. J.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Klosner, M.

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

Kojimoto, N.

Leang, K. K.

K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators,” IEEE Trans. Control Syst. Tech. 15(5), 927–935 (2007).
[Crossref]

A. J. Fleming and K. K. Leang, “An experimental comparison of PI, inversion, and damping control for high performance nanopositioning,” in American Control Conference (ACC) (2013), pp. 6027–6032.
[Crossref]

Lee, S.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Luo, W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Lygeros, J.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Mahmood, I. A.

I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Milne, W. I.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Moheimani, S.

I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Moheimani, S. O. R.

Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
[Crossref] [PubMed]

S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
[Crossref]

Moultrie, J.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Mudanyali, O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Nagahara, H.

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Eng. 54(2), 025114 (2015).
[Crossref]

Nathan, A.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Ozcan, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Pantazi, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Peleg, S.

M. Irani and S. Peleg, “Improving resolution by image registration,” Graph. Models Image Proc. 53(3), 231–239 (1991).
[Crossref]

A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. I-645–I-650.

Petersen, I. R.

Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
[Crossref] [PubMed]

Petersen, K. Y.

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

Raghunandan, S.

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

Rav-Acha, A.

A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. I-645–I-650.

Robertson, J.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Rogers, J. A.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Sebastian, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Someya, T.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Su, C. Y.

G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
[Crossref]

Su, T. W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Suzuki, Y.

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

Tuma, T.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Vagia, M.

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

Vries, T. J. A.

B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).

Xue, L.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Yagi, Y.

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Eng. 54(2), 025114 (2015).
[Crossref]

Yong, Y. K.

Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
[Crossref] [PubMed]

Zemel, M.

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

Zhou, G.

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

Zhu, L. M.

G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
[Crossref]

Zomet, A.

A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. I-645–I-650.

Graph. Models Image Proc. (1)

M. Irani and S. Peleg, “Improving resolution by image registration,” Graph. Models Image Proc. 53(3), 231–239 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. K. L. Cheo, Y. Du, G. Zhou, and F. S. Chau, “Post-corrections of image distortions in a scanning grating-based spectral line imager,” IEEE Photon. Technol. Lett. 25(12), 1103–1106 (2013).
[Crossref]

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution Image Reconstruction: a Technical Overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

IEEE Trans. Control Syst. Tech. (2)

S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans. Control Syst. Tech. 15(5), 802–823 (2007).
[Crossref]

K. K. Leang and S. Devasia, “Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators,” IEEE Trans. Control Syst. Tech. 15(5), 927–935 (2007).
[Crossref]

IEEE Trans. NanoTechnol. (1)

I. A. Mahmood, S. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

IEEE-ASME T, Mech. (1)

A. A. Eielsen, M. Vagia, J. T. Gravdahl, and K. Y. Petersen, “Damping and tracking control schemes for nanopositioning,” IEEE-ASME T, Mech. 19(2), 432–444 (2013).

IEEE-ASME Trans. Mech. (1)

B. Babakhani, T. J. A. Vries, and J. V. Amerongen, “A comparison of the performance improvement by collocated and noncollocated active damping in motion systems,” IEEE-ASME Trans. Mech. 18(3), 905–913 (2013).

Int. J. Comput. Vis. (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Mechatronics (1)

G. Y. Gu, L. M. Zhu, and C. Y. Su, “Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity,” Mechatronics 24(4), 367–375 (2014).
[Crossref]

Nanotechnology (2)

Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, “High-speed cycloid-scan atomic force microscopy,” Nanotechnology 21(36), 365503 (2010).
[Crossref] [PubMed]

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9(9), 889–895 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

H. Nagahara and Y. Yagi, “Lensless imaging for wide field of view,” Opt. Eng. 54(2), 025114 (2015).
[Crossref]

Proc. IEEE (2)

A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. P. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. Amaratunga, and W. I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE 100, 1486–1517 (2012).
[Crossref]

K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,” Proc. IEEE 93(8), 1500–1510 (2005).
[Crossref]

Science (1)

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010).
[Crossref] [PubMed]

Other (6)

A. J. Fleming and K. K. Leang, “An experimental comparison of PI, inversion, and damping control for high performance nanopositioning,” in American Control Conference (ACC) (2013), pp. 6027–6032.
[Crossref]

D. M. Ljubicic, High Speed Instrumentation for Inspection of transparent parts, Doctoral dissertation, (Massachusetts Institute of Technology, 2013).

http://www.appliedimage.com .

E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities (Morgan Kauffman Publishers, 2005).

A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2001), pp. I-645–I-650.

D. P. Capel, Image mosaicing and super-resolution (Springer Science & Business Media, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Rectangular target. (b) A raster scan of (a). (c) A concentric-circle scan of (a). (d) Round target. (e) A raster scan of (d). (f) A concentric-circle scan of (d). Here turnaround points and scan motion directions are respectively marked by dots and arrows.
Fig. 2
Fig. 2 The setup of imaging system.
Fig. 3
Fig. 3 Workflow of rotational imaging system.
Fig. 4
Fig. 4 Time control of CCTS imaging (TA: acceleration time. θ ˙ : maximum rotation speed.).
Fig. 5
Fig. 5 Trajectory performance of raster scan and concentric circular scan on round target: row 1 – acceleration time series along X axis; row 2 – acceleration time series along Y axis; row 3 – velocity time series along Y axis; row 4 – spectra of acceleration along Y axis; column (a) - raster scan; column (b) - concentric CLV circular scan; column (c) - concentric CAV circular scan.
Fig. 6
Fig. 6 Mapping performance of concentric circular scan.(a) Synthetic Star Target. (b) Linear Interpolation Mapping. (c) NN Interpolation Mapping. (d) Histograms of Mapping Errors
Fig. 7
Fig. 7 First two rows: (a)-(f) Tracking trajectories of CAV CCTS scans for ω = 20°, 40°, 90°, 180°, 360, 720°/s. Third row: (g)-(i) tracking points of raster scanning. (l) Tracking spot. The pitch of the scans was 1μm. Solid lines and ‘*’ are respectively the desired CCTS trajectories and sample positions. ‘o’ and ‘ + ’ are the achieved sample position and Cartesian coordinates.
Fig. 8
Fig. 8 Mosaicing and SR imaging: (a) Stitching 2971 10 × -images of the groups of 2-7 in target QA30. (b) Stitching 148 10 × -images of the 4th-7th groups (the highlighted center of image (a)) in target QA30. (c) Stitching 7 10 × -images of the 6th and 7th groups (the highlighted center of image (b)) in target QA30. (d) One 80 × 64 image patch for stitching that includes the 6th group (the highlighted region in image (c)). (e) Concentric circle sampling and mosaicing 70483 10 × -pixels of target QA30. (f) Zoom-in highlighted center of image (e). (g) One 1024 × 1024 10 × -image of target QA30. (h) Zoom-in highlighted center of image (g). (i) QA30-SR (interpolation factor = 2) using four mosaiced 10 × -images acquired by CCTS. (j) Zoom-in highlighted center of image (i). (k) 20 × -image of the groups 4-7 in target. (l) Zoom-in highlighted center of image (k).
Fig. 9
Fig. 9 Velocity profile in one circle or one scan line.

Tables (2)

Tables Icon

Table 1 The cost of key components of the designed imaging system

Tables Icon

Table 2 RMS of sampling error and scanning time for raster (p = 21.8μm, 210 × 210 point grid) and CAV CCTS scans (pitch p = 21.8μm, 105 circles).

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

a= ( θ ˙ ) 2 αt.
θ ˙ = ( a αt ) 1/2 = ( a α ) 1/2 t 1/2 ,
θ=2 ( a α ) 1/2 t 1/2 +C,
A raster = S 2 ,
N line = S p ,
t T =( S v + T A T ) N line ,
r maxA = 2 2 S,
N circleA = 2 S 2p .
t R =( 2 πS 2v + πp v + T AR ) N circleA .
r maxA = 1 2 S.
N circleB = S 2p .
t R ( πS 2v + πp v + T AR ) N circleB .
v= r R θ ˙ ,
t R =( 2π θ ˙ + T Aθ ) N circleB .
t R πS θ ˙ p + S p T Aθ .
θ ˙ =πv/S,
T A = t T1/R1 = t T3/R3 = v a ,
S T1/R1 = 1 2 a ( t T1/R1 ) 2 = v 2 2a .
S T2/R2 =v t T2/R2 ,
t T2/R2 = 1 v ( S S T1/R1 S T3/R3 )= 1 v ( S v 2 a ),
t Tc =2( 1 v ( S v 2 a )+2 v a )=2( S v + T A ).
t T =2 N line ( S v + T A ).
t R = 1 v ( 2πp v 2 a )+,..., 1 v ( 2πip v 2 a )+ 1 v ( 2π N circleA p v 2 a )+2 N circleA v a =( πp( N circleA +1 ) v + T A ) N circleA .
t R ( 2 πS 2v + 2πp v + T A ) N circleA .
t R ( 2 πS 2v + T A ) N circleA .
t R =( πp( N circleB +1 ) v + T A ) N circleB .
t R ( πS 2v + 2πp v + T A ) N circleA .
t circle =π/ω.
s rate = #sample t circle 2 T A ,
s rate = #sample π/ω2 T A .

Metrics