Abstract

A computational complexity, power consumption, and receiver sensitivity analysis for three different scenarios for short-range direct detection links is presented: 1) quad-polarization, 2) wavelength division multiplexing (WDM), and 3) parallel optics. Results show that the power consumption penalty associated to the quad-polarization digital signal processing (DSP) is negligibly small. However, the required analog to digital converters account for 47.6% of the total system power consumption. Transmission of 4×32 Gbps over 2 km standard single mode fiber is achieved with a receiver sensitivity of 4.4 dBm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
DSP-free ‘coherent-lite’ transceiver for next generation single wavelength optical intra-datacenter interconnects

Mohamed Morsy-Osman, Mohammed Sowailem, Eslam El-Fiky, Tristan Goodwill, Thang Hoang, Stephane Lessard, and David V. Plant
Opt. Express 26(7) 8890-8903 (2018)

Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links

Jose Estaran, Roberto Rodes, Tien Thang Pham, Markus Ortsiefer, Christian Neumeyr, Jürgen Rosskopf, and Idelfonso Tafur Monroy
Opt. Express 20(27) 28524-28531 (2012)

Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks

Rui Lin, Joris Van Kerrebrouck, Xiaodan Pang, Michiel Verplaetse, Oskars Ozolins, Aleksejs Udalcovs, Lu Zhang, Lin Gan, Ming Tang, Songnian Fu, Richard Schatz, Urban Westergren, Sergei Popov, Deming Liu, Weijun Tong, Timothy De Keulenaer, Guy Torfs, Johan Bauwelinck, Xin Yin, and Jiajia Chen
Opt. Express 26(8) 10519-10526 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Vasan, “A venture perspective on cloud computing,” Computer 44(3), 60–62 (2011).
    [Crossref]
  2. T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
    [Crossref]
  3. J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
    [Crossref]
  4. H. Griesser, A. Dochhan, and J. P. Elbers, “DSP-enhanced transmission for 100G+ DWDM data center interconnects,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper ST1D.4.
  5. M. Iglesias Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. Tafur Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
    [Crossref]
  6. D. Qian, N Cviketic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28, 484–493 (2010).
    [Crossref]
  7. K. Kikuchi, “Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems,” Opt. Express 22, 1971–1980 (2014).
    [Crossref] [PubMed]
  8. K. Kikuchi and S. Kawakami, “16-ary Stokes-vector modulation enabling DSP-based direct detection at 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3K.6.
    [Crossref]
  9. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.
  10. J. Estarán, M. Usuga, E. Porto da Silvia, M. Piels, M. Iglesias Olmedo, D. Zibar, and I. Tafur Monroy, “Quaternary polarization-multiplexed subsystem for high capacity IM/DD optical data links,” J. Lightwave Technol. 33, 1408–1416 (2015).
    [Crossref]
  11. C. Herard and A. Lacourt, “Three channel multiplexing using polarization of light,” Optics Communications 60(1–2), 27–31(1986).
    [Crossref]
  12. P. Dong, C. Xie, and L. Buhl, “Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22, 2119–2125 (2014).
    [Crossref] [PubMed]
  13. L. Litwin, “Matched filtering and timing recovery in digital receivers,” RF Design 24(9), 32–49 (2001).
  14. B. S. G. Pillai, B. Sedighi, K. Guan, N. P. Anthapadmanabhan, W. Shieh, K. J. Hinton, and R. S. Tucker, “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightwave Technol. 32, 3093–3111 (2014).
    [Crossref]
  15. J. O. Smith, “Physical audio signal processing,” Standford University, http://ccrma.standford.edu/jos/pasp/ , online book, date last viewed 10 (2010).
  16. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31, 1367–1373 (2013).
    [Crossref]
  17. Texas Instruments, “CMOS power consumption and cpd calculation,” http://www.ti.com/lit/an/scaa035b/scaa035b.pdf .
  18. S. Savory, “Digital signal processing for coherent systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3C.7.
    [Crossref]
  19. K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
    [Crossref] [PubMed]

2015 (2)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

J. Estarán, M. Usuga, E. Porto da Silvia, M. Piels, M. Iglesias Olmedo, D. Zibar, and I. Tafur Monroy, “Quaternary polarization-multiplexed subsystem for high capacity IM/DD optical data links,” J. Lightwave Technol. 33, 1408–1416 (2015).
[Crossref]

2014 (5)

2013 (1)

2011 (1)

R. Vasan, “A venture perspective on cloud computing,” Computer 44(3), 60–62 (2011).
[Crossref]

2010 (1)

2001 (1)

L. Litwin, “Matched filtering and timing recovery in digital receivers,” RF Design 24(9), 32–49 (2001).

1986 (1)

C. Herard and A. Lacourt, “Three channel multiplexing using polarization of light,” Optics Communications 60(1–2), 27–31(1986).
[Crossref]

Anthapadmanabhan, N. P.

Buhl, L.

Chagnon, M.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

Cheng, Q.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

Cunningham, D. G.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31, 1367–1373 (2013).
[Crossref]

Cviketic, N

Dochhan, A.

H. Griesser, A. Dochhan, and J. P. Elbers, “DSP-enhanced transmission for 100G+ DWDM data center interconnects,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper ST1D.4.

Dong, P.

Elbers, J. P.

H. Griesser, A. Dochhan, and J. P. Elbers, “DSP-enhanced transmission for 100G+ DWDM data center interconnects,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper ST1D.4.

Estaran, J. M.

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Estarán, J.

Griesser, H.

H. Griesser, A. Dochhan, and J. P. Elbers, “DSP-enhanced transmission for 100G+ DWDM data center interconnects,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper ST1D.4.

Guan, K.

Herard, C.

C. Herard and A. Lacourt, “Three channel multiplexing using polarization of light,” Optics Communications 60(1–2), 27–31(1986).
[Crossref]

Hinton, K. J.

Hu, J.

Iglesias Olmedo, M.

Jensen, J. B.

M. Iglesias Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. Tafur Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
[Crossref]

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Kawakami, S.

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
[Crossref] [PubMed]

K. Kikuchi and S. Kawakami, “16-ary Stokes-vector modulation enabling DSP-based direct detection at 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3K.6.
[Crossref]

Kikuchi, K.

Lacourt, A.

C. Herard and A. Lacourt, “Three channel multiplexing using polarization of light,” Optics Communications 60(1–2), 27–31(1986).
[Crossref]

Lessard, S.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

Litwin, L.

L. Litwin, “Matched filtering and timing recovery in digital receivers,” RF Design 24(9), 32–49 (2001).

Morsy-Osman, M.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

Penty, R. V.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31, 1367–1373 (2013).
[Crossref]

Piels, M.

Pillai, B. S. G.

Plant, D. V.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

Popov, S.

Porto da Silvia, E.

Poulin, M.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

Qian, D.

Savory, S.

S. Savory, “Digital signal processing for coherent systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3C.7.
[Crossref]

Sedighi, B.

Shieh, W.

Tafur Monroy, I.

Tatarczak, A.

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Tucker, R. S.

Usuga, M.

Vasan, R.

R. Vasan, “A venture perspective on cloud computing,” Computer 44(3), 60–62 (2011).
[Crossref]

Wang, T.

Wei, J.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

Wei, J. L.

White, I. H.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31, 1367–1373 (2013).
[Crossref]

Xie, C.

Xu, X.

M. Iglesias Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. Tafur Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
[Crossref]

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Zhong, Q.

M. Iglesias Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. Tafur Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
[Crossref]

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Zibar, D.

Zuo, T.

M. Iglesias Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. Tafur Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
[Crossref]

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Computer (1)

R. Vasan, “A venture perspective on cloud computing,” Computer 44(3), 60–62 (2011).
[Crossref]

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53, 182–189 (2015).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (3)

Optics Communications (1)

C. Herard and A. Lacourt, “Three channel multiplexing using polarization of light,” Optics Communications 60(1–2), 27–31(1986).
[Crossref]

RF Design (1)

L. Litwin, “Matched filtering and timing recovery in digital receivers,” RF Design 24(9), 32–49 (2001).

Other (7)

J. O. Smith, “Physical audio signal processing,” Standford University, http://ccrma.standford.edu/jos/pasp/ , online book, date last viewed 10 (2010).

Texas Instruments, “CMOS power consumption and cpd calculation,” http://www.ti.com/lit/an/scaa035b/scaa035b.pdf .

S. Savory, “Digital signal processing for coherent systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3C.7.
[Crossref]

H. Griesser, A. Dochhan, and J. P. Elbers, “DSP-enhanced transmission for 100G+ DWDM data center interconnects,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper ST1D.4.

K. Kikuchi and S. Kawakami, “16-ary Stokes-vector modulation enabling DSP-based direct detection at 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3K.6.
[Crossref]

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of European Conference on Optical Communication, (ECOC), paper PD.4.4.

T. Zuo, A. Tatarczak, M. Iglesias Olmedo, J. M. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and I. Tafur Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2E.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the experimental setup for a 4-SOP 128 Gbps transmission over 2 km standard singlemode fiber. DFB, distributed feedback laser; DSP, digital signal processing; PD, photodiode; PPG, pulse pattern generator; WDM, wavelength division multiplexing.
Fig. 2
Fig. 2 Eye diagrams for the quad-polarization signal received by (a) the S0 photodiode, by (b) the S1 photodiode, by (c) the S2 photodiode, and by (d) the S3 photodiode.
Fig. 3
Fig. 3 DSP blocks for 4-SOP IM/DD. DSP, digital signal processing; IM/DD, intensity modulated/direct detection; SOP, state of polarization.
Fig. 4
Fig. 4 DSP blocks for stage 2: SOP tracking.
Fig. 5
Fig. 5 Schematic of the experimental setup for (a) 4 channel WDM, (b) 4-lane parallel optics 128 Gbps transmission over 2 km standard single mode fiber. DFB, Distributed feedback laser; DSP, Digital signal processing; PD, Photodiode; PPG, pulse pattern generator; WDM, Wavelength division multiplexing.
Fig. 6
Fig. 6 Quad-polarization components power consumption. ADC, analog to digital converter; DFB, distributed feedback laser; DSP, digital signal processing; MZM, Mach-Zehnder modulator; PD, Photo-detector.
Fig. 7
Fig. 7 Normalized values for (a) power consumption and (b) DSP complexity for the quad-polarization and parallel optics and WDM with and without ADC. ADC, analog to digital converter; PO, parallel optics; WDM, wavelength division multiplexing.
Fig. 8
Fig. 8 BER sensitivity to PD input power for 32 Gbd quad-polarization for B2B (black, square) and 2 km SSFM transmission (red, circle).
Fig. 9
Fig. 9 BER sensitivity to PD input power for 32 Gbd for WDM for B2B (red, circle) and 2 km SSFM transmission (black, square), and for Parallel optics for B2B (green, triangle) and 2 km SSMF transmission (blue, triangle).

Tables (5)

Tables Icon

Table 1 Number of Real Additions and Real Multiplications for Stage 1: Front-end Corrections

Tables Icon

Table 2 Number of Real Additions and Real Multiplications for Stage 2: SOP Trackinga

Tables Icon

Table 3 Number of Real Additions and Real Multiplications for Stage 3: Demodulation

Tables Icon

Table 4 Modelling Parameters - Power Consumption

Tables Icon

Table 5 Power Consumption

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S 1 = 2 I X | Y S 0
S 2 = 2 I 45 | 135 S 0
S 3 = 2 I RC | LC S 0
[ I X I Y I 45 I RC ] = ( M demux ) * [ S 0 S 1 S 2 S 3 ]
M demux = ( 0.5 0.5 0.5 0.5 0 0 1 0 0.5 0.5 0.5 0.5 0 0 0 1 )
[ I x I y I 45 I RC ] = ( M demux ) * ( M rot T ) * [ S 0 S 1 S 2 S 3 ]
M rot = ( 1 0 0 0 0 S 11 S 12 S 13 0 S 21 S 22 S 23 0 S 31 S 32 S 33 )
e n = ( y n y n 2 ) y n 1
u ( n ) = [ S ( n ) S 0 ( n ) ] v ( n )
v i ( n + 1 ) = v ( n ) + μ [ S ( n ) S 0 ( n ) v ( n ) ] v ( n ) + μ [ S ( n ) S 0 ( n ) v ( n ) ]
E DSP = E front end + E track + E dem
E ADC = 4 F A n adc F s

Metrics