Abstract

The Wadley Loop is a method of down-converting RF signals over a wide frequency range using a low-quality widely-tunable oscillator and a high-stability frequency comb reference. Together the widely tunable oscillator and high-stability comb source provide a widely-tunable high-stability receiver. In this paper, we demonstrate an electro-optic version of the Wadley Loop that is able to provide a widely-tunable, high phase stability coherent receiver. This could have applications in Quadrature Amplitude Modulation (QAM) receivers with high constellation sizes, optical OFDM receivers with long symbol durations, and wide-range high spectral resolution optical spectrum analysers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
40Gbit/s coherent optical receiver using a Costas loop

Hyun-chul Park, Mingzhi Lu, Eli Bloch, Thomas Reed, Zach Griffith, Leif Johansson, Larry Coldren, and Mark Rodwell
Opt. Express 20(26) B197-B203 (2012)

Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise

Stefan Preußler, Norman Wenzel, Ralf-Peter Braun, Nina Owschimikow, Carlo Vogel, Anselm Deninger, Avi Zadok, Ulrike Woggon, and Thomas Schneider
Opt. Express 21(20) 23950-23962 (2013)

Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems

Gunnar Jacobsen, Tianhua Xu, Sergei Popov, Jie Li, Ari T. Friberg, and Yimo Zhang
Opt. Express 19(15) 14487-14494 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol. 5(4), 414–428 (1987).
    [Crossref]
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  3. P. J. Winzer and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in 16th Annual Mtg. of Lasers and Electro-Optics Society, LEOS (Baltimore, MD, 2003), pp. 759–760.
  4. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  5. S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.
  6. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  7. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
    [Crossref]
  8. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  9. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-aided carrier phase estimation for coherent optical communications,” J. Lightwave Technol. 28(11), 1597–1607 (2010).
    [Crossref]
  10. “Wadley Loop,” http://en.wikipedia.org/wiki/Wadley_Loop .
  11. D. L. Talbot, “Frequency Synthesis Applications,” in Frequency Aquisition Techniques for Phase Locked Loops (John Wiley and Sons, New Jersey, 2012), pp. 166–173.
  12. Y. Ma, Y. Qi, T. Yan, C. Simin, and W. Shieh, “1-Tb/s Single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [Crossref]
  13. S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photonics Technol. Lett. 16(3), 930–932 (2004).
    [Crossref]
  14. B. Hilpert, “Racal RA-17 & RA-117 Technical Description,” (2008), http://www.cs.ubc.ca/~hilpert/e/radio/RacalRA117/technical.html#wadley2015 .
  15. M. Nazarathy and A. Tolmachev, “Subbanded DSP architectures based on underdecimated filter banks for coherent OFDM receivers: overview and recent advances,” IEEE Signal Process. Mag. 31(2), 70–81 (2014).
    [Crossref]
  16. A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
    [Crossref]
  17. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  18. C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
    [Crossref]
  19. J. C. M. Diniz, J. C. R. F. de Oliveira, E. S. Rosa, V. B. Ribeiro, V. E. S. Parahyba, R. da Silva, E. P. da Silva, L. H. H. de Carvalho, A. F. Herbster, and A. C. Bordonalli, “Simple feed-forward wide-range frequency offset estimator for optical coherent receivers,” Opt. Express 19(26), B323–B328 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

M. Nazarathy and A. Tolmachev, “Subbanded DSP architectures based on underdecimated filter banks for coherent OFDM receivers: overview and recent advances,” IEEE Signal Process. Mag. 31(2), 70–81 (2014).
[Crossref]

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

2008 (3)

2007 (1)

2004 (1)

S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photonics Technol. Lett. 16(3), 930–932 (2004).
[Crossref]

1987 (1)

T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol. 5(4), 414–428 (1987).
[Crossref]

Albores-Mejia, A.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Banno, E.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Bao, H.

Barros, D. J. F.

Beppu, S.

Bordonalli, A. C.

Chen, J.

Corcoran, B.

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

da Silva, E. P.

da Silva, R.

de Carvalho, L. H. H.

de Oliveira, J. C. R. F.

Diniz, J. C. M.

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in 16th Annual Mtg. of Lasers and Electro-Optics Society, LEOS (Baltimore, MD, 2003), pp. 759–760.

Hadjifotiou, A.

S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photonics Technol. Lett. 16(3), 930–932 (2004).
[Crossref]

Herbster, A. F.

Hoffmann, S.

Ip, E.

Jansen, S. L.

S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.

Kahn, J. M.

Kam, P. Y.

Kaneko, T.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Kasai, K.

Kimura, T.

T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol. 5(4), 414–428 (1987).
[Crossref]

Kuwastuka, H.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Lau, A. P. T.

Lowery, A. J.

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

Ma, Y.

Morita, I.

S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.

Nakazawa, M.

Nazarathy, M.

M. Nazarathy and A. Tolmachev, “Subbanded DSP architectures based on underdecimated filter banks for coherent OFDM receivers: overview and recent advances,” IEEE Signal Process. Mag. 31(2), 70–81 (2014).
[Crossref]

Noé, R.

Parahyba, V. E. S.

Pfau, T.

Qi, Y.

Ribeiro, V. B.

Rosa, E. S.

Savory, S.

S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photonics Technol. Lett. 16(3), 930–932 (2004).
[Crossref]

Savory, S. J.

Shieh, W.

Shoji, H.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Simin, C.

Tadeka, N.

S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.

Tanaka, H.

S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.

Tang, Y.

Tolmachev, A.

M. Nazarathy and A. Tolmachev, “Subbanded DSP architectures based on underdecimated filter banks for coherent OFDM receivers: overview and recent advances,” IEEE Signal Process. Mag. 31(2), 70–81 (2014).
[Crossref]

Tran, A. V.

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

Uesaka, K.

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in 16th Annual Mtg. of Lasers and Electro-Optics Society, LEOS (Baltimore, MD, 2003), pp. 759–760.

Yan, T.

Yoshida, M.

Yu, C.

Zhang, S.

Zhu, C.

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Savory and A. Hadjifotiou, “Laser linewidth requirements for optical DQPSK systems,” IEEE Photonics Technol. Lett. 16(3), 930–932 (2004).
[Crossref]

C. Zhu, B. Corcoran, A. V. Tran, and A. J. Lowery, “Nyquist-WDM with low-complexity joint matched filtering and adaptive equalization,” IEEE Photonics Technol. Lett. 26(23), 2323–2326 (2014).
[Crossref]

IEEE Signal Process. Mag. (1)

M. Nazarathy and A. Tolmachev, “Subbanded DSP architectures based on underdecimated filter banks for coherent OFDM receivers: overview and recent advances,” IEEE Signal Process. Mag. 31(2), 70–81 (2014).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (5)

Other (6)

P. J. Winzer and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in 16th Annual Mtg. of Lasers and Electro-Optics Society, LEOS (Baltimore, MD, 2003), pp. 759–760.

S. L. Jansen, I. Morita, N. Tadeka, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA., 2007), p. PDP15.

B. Hilpert, “Racal RA-17 & RA-117 Technical Description,” (2008), http://www.cs.ubc.ca/~hilpert/e/radio/RacalRA117/technical.html#wadley2015 .

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwastuka, “Optical-comb-line selection from a low-power/low-OSNR comb using a low-coherence semiconductor laser for flexible ultra-dense short range transceivers,” in Optical Fiber Commun. Conf.(OSA, 2015), pp. W2A.23.
[Crossref]

“Wadley Loop,” http://en.wikipedia.org/wiki/Wadley_Loop .

D. L. Talbot, “Frequency Synthesis Applications,” in Frequency Aquisition Techniques for Phase Locked Loops (John Wiley and Sons, New Jersey, 2012), pp. 166–173.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Radio frequency implementation of the Wadley Loop (top) and a map of the frequencies along the system (bottom). The acronyms are explained in the text.

Fig. 2
Fig. 2

Electro-optic implementation of the Wadley Loop using coherent optical receivers. The acronyms are explained in the text. The blue shading indicates baseband electrical signals.

Fig. 3
Fig. 3

Experimental demonstration of the optical Wadley Loop. Inset (a) is the spectrum of the QPSK test signal. Inset (b) is the spectrum of the filtered MLL. Inset (c) is the spectrum of the WTO (blue) with a Lorentzian curve fit (red) indicating a linewidth of 19.8 MHz. All optical spectra were measured with an Agilent High-Resolution Spectrophotometer (HRS).

Fig. 4
Fig. 4

Electrical spectra at the outputs of the coherent receiver: (a) X-polarization output (signal × WTO); (b) Y-polarization output (comb × WTO).

Fig. 5
Fig. 5

(a) Signal spectrum after Mixer M3; (b) comparison of phase noise evolution; (c) and (d) recovered signal constellations with and without Wadley Loop processing.

Fig. 6
Fig. 6

(a): Frequency tuning of the DFB laser, (b): calculated frequency offset with and without Wadley Loop processing, (c): measured Q-factor when tuning WTO.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f M1 = f WTO f in .
f M2 = f WTO n. f XTAL .
f R1 = f WTO n sel . f XTAL .
f out = f R1 f M1 = f in n sel . f XTAL .

Metrics