Abstract

A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry–Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations

Chung-Yi Li, Hai-Han Lu, Ting-Chieh Lu, Chien-An Chu, Bo-Rui Chen, Chun-Yu Lin, and Peng-Chun Peng
Opt. Express 23(25) 31807-31816 (2015)

A full-duplex CATV/wireless-over-fiber lightwave transmission system

Chung-Yi Li, Hai-Han Lu, Cheng-Ling Ying, Chun-Jen Cheng, Che-Yu Lin, Zhi-Wei Wan, and Jian-Hua Chen
Opt. Express 23(7) 9221-9232 (2015)

Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme

Hai-Han Lu, Chung-Yi Li, Hwan-Wei Chen, Chun-Ming Ho, Ming-Te Cheng, Sheng-Jhe Huang, Zih-Yi Yang, and Xin-Yao Lin
Opt. Express 24(15) 17250-17258 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
    [Crossref]
  2. C. Lim, Y. Yang, and A. Nirmalathas, “Wireless signals transport in fiber-wireless links: digitized versus analog,” in Proceedings of the 12th International Conference on Optical Internet (COIN) (2014), pp. 1–2.
    [Crossref]
  3. L. M. Pessoa, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  4. C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
    [Crossref]
  5. J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
    [Crossref]
  6. H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
    [Crossref]
  7. C. Y. Lin, H. H. Lu, C. Y. Li, P. Y. Wu, P. C. Peng, T. W. Jhang, and C. Y. Lin, “Employing injection-locked FP LDs to set up a hybrid CATV/MW/MMW WDM light wave transmission system,” Opt. Lett. 39(13), 3931–3934 (2014).
    [Crossref] [PubMed]
  8. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
    [Crossref]
  9. H. H. Lu and C. T. Lee, “Directly modulated CATV transmission systems using half-split-band and wavelength-division-multiplexing techniques,” IEEE Photonics Technol. Lett. 10(11), 1653–1655 (1998).
    [Crossref]
  10. H. S. Su, C. Y. Li, W. Y. Lin, H. H. Lu, C. H. Chang, P. Y. Wu, Y. P. Lin, and C. Y. Chen, “Fiber optical CATV transport systems based on PM and light injection-locked DFB LD as a duplex transceiver,” Opt. Express 19(27), 26928–26935 (2011).
    [Crossref] [PubMed]
  11. B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).
  12. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999), pp. 33–37.

2015 (1)

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

2014 (2)

2012 (2)

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

2011 (2)

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

H. S. Su, C. Y. Li, W. Y. Lin, H. H. Lu, C. H. Chang, P. Y. Wu, Y. P. Lin, and C. Y. Chen, “Fiber optical CATV transport systems based on PM and light injection-locked DFB LD as a duplex transceiver,” Opt. Express 19(27), 26928–26935 (2011).
[Crossref] [PubMed]

2008 (1)

H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
[Crossref]

2007 (1)

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

1998 (1)

H. H. Lu and C. T. Lee, “Directly modulated CATV transmission systems using half-split-band and wavelength-division-multiplexing techniques,” IEEE Photonics Technol. Lett. 10(11), 1653–1655 (1998).
[Crossref]

Cao, Z.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

Chang, C. H.

Chang, G. K.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Chen, B.

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Chen, C. Y.

Chi, H.

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

Chien, H. C.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Coelho, D.

Fan, S. H.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

He, S.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Jhang, T. W.

Jin, X. F.

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

Lau, E. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Lee, C. T.

H. H. Lu and C. T. Lee, “Directly modulated CATV transmission systems using half-split-band and wavelength-division-multiplexing techniques,” IEEE Photonics Technol. Lett. 10(11), 1653–1655 (1998).
[Crossref]

Li, C. Y.

Li, F.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

Li, X.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

Lin, C. Y.

Lin, W. Y.

Lin, Y. P.

Liu, J.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Lu, H. H.

C. Y. Lin, H. H. Lu, C. Y. Li, P. Y. Wu, P. C. Peng, T. W. Jhang, and C. Y. Lin, “Employing injection-locked FP LDs to set up a hybrid CATV/MW/MMW WDM light wave transmission system,” Opt. Lett. 39(13), 3931–3934 (2014).
[Crossref] [PubMed]

H. S. Su, C. Y. Li, W. Y. Lin, H. H. Lu, C. H. Chang, P. Y. Wu, Y. P. Lin, and C. Y. Chen, “Fiber optical CATV transport systems based on PM and light injection-locked DFB LD as a duplex transceiver,” Opt. Express 19(27), 26928–26935 (2011).
[Crossref] [PubMed]

H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
[Crossref]

H. H. Lu and C. T. Lee, “Directly modulated CATV transmission systems using half-split-band and wavelength-division-multiplexing techniques,” IEEE Photonics Technol. Lett. 10(11), 1653–1655 (1998).
[Crossref]

Ma, H. L.

H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
[Crossref]

Patra, A. S.

H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
[Crossref]

Peng, P. C.

Pessoa, L. M.

Salgado, H. M.

Su, H. S.

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Wu, M. C.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Wu, P. Y.

Ye, C.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Yu, J.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

Zhang, J.

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

Zhang, L.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

Zhang, X. M.

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

Zheng, S. L.

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

Zhu, M.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (6)

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60-GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photonics Technol. Lett. 24(22), 1984–1987 (2012).
[Crossref]

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, “Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization,” IEEE Photonics Technol. Lett. 23(18), 1325–1327 (2011).
[Crossref]

H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-fiber transport systems integration with 622 Mbps baseband transmission,” IEEE Photonics Technol. Lett. 20(19), 1618–1620 (2008).
[Crossref]

F. Li, X. Li, J. Zhang, J. Yu, and Z. Cao, “Fiber-wireless-fiber link for DFT-spread OFDM signal transmission at W-band,” IEEE Photonics Technol. Lett. 27(12), 1273–1276 (2015).
[Crossref]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

H. H. Lu and C. T. Lee, “Directly modulated CATV transmission systems using half-split-band and wavelength-division-multiplexing techniques,” IEEE Photonics Technol. Lett. 10(11), 1653–1655 (1998).
[Crossref]

J. Electromagn. Waves Appl. (1)

B. Chen, S. L. Zheng, X. M. Zhang, X. M. Zhang, X. F. Jin, and H. Chi, “Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG,” J. Electromagn. Waves Appl. 23(9), 161–170 (2012).

Opt. Express (2)

Opt. Lett. (1)

Other (2)

C. Lim, Y. Yang, and A. Nirmalathas, “Wireless signals transport in fiber-wireless links: digitized versus analog,” in Proceedings of the 12th International Conference on Optical Internet (COIN) (2014), pp. 1–2.
[Crossref]

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999), pp. 33–37.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The configuration of the proposed hybrid MW/MMW/CATV WoF transmission systems based on multiple injection-locked FP LDs.
Fig. 2
Fig. 2 (a) The optical spectrum of the free-running FP LD1 without 5 Gbps/20 GHz MW data signal modulation. (b) The optical spectrum of the injection-locked FP LD1 locked at λ1 (1546.18 nm) with 5 Gbps/20 GHz MW data signal modulation.
Fig. 3
Fig. 3 The optical spectrum of the injection-locked FP LD2 locked at λ2 (1549.68 nm) with 5 Gbps/20 GHz MW data signal modulation.
Fig. 4
Fig. 4 The optical spectrum of the injection-locked FP LD3 locked at λ3 (1554.63 nm) with low-band CATV signal (channels 2-40) modulation.
Fig. 5
Fig. 5 The optical spectrum measured at point (A) of Fig. 1.
Fig. 6
Fig. 6 (a) The optical spectrum before the OBPF3. (b) The optical spectrum after the OBPF3.
Fig. 7
Fig. 7 The measured BER curves of the 5 Gbps/20 GHz MW data signal for BTB and over a 40-km SMF and a 4-m RF wireless transmission scenarios.
Fig. 8
Fig. 8 The measured BER curves of the 5 Gbps/60 GHz MMW data signal for BTB and over a 40-km SMF and a 4-m RF wireless transmission scenarios.
Fig. 9
Fig. 9 The measured BER curves of the 5 Gbps/20 GHz MW data signal for BTB and over a 40-km SMF and a 4-m RF wireless transmission scenarios (up-link transmission).
Fig. 10
Fig. 10 The measured CNR, CSO, and CTB values under NTSC channel number (CH2-78) with half-split-band scheme, with and without 3 dBm light injection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CSO=10log[ mD λ c 2 Lf 4c 16 (Δτ) 2 + 4 λ c 4 L 2 π 2 f 6 c 2 ]+10log N CSO +6
CTB=10log[ 9 m 2 D 2 λ c 4 L 2 f 2 4c ( 4 (Δτ) 2 +4 π 2 f ) ]+10log N CTB +6
CNR= ( CN R RIN 1 +( CN R th 1 +CN R shot 1 ) ) 1

Metrics