Abstract

We have investigated the effect of the dynamics of crater size on the poly(dimethylsiloxane) (PDMS) surface morphology in fs-laser micro-processing. PDMS surface was processed with varying both inter-pulse interval and inter-spot distance between successive laser pulses. With keeping the interval of 5 ms crater shape is round even if the spot is overlapped in space. But decreasing the interval to 0.02 ms the shape of the crater is no longer round. Decreasing the inter-distance between the craters results in roughened surface morphology even at time intervals of 5 ms. Temporal dependence of single-shot fs-laser induced crater size was measured as a function of time delay. Within 0.1 ms after pulse irradiation with a fluence of 4.8 J/cm2 on PDMS surface the crater size has reached to its maximum values and then decreased with a time constant of about 0.3 ms. The surface morphology after fs-laser pulse irradiation is strongly dependent on not only inter-spot distance between successive laser pulse but also their inter-pulse intervals. By proposing a theoretical model on their dynamic features, we will try to explain the current observation in quantitatively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

Zuoming Qian, Andrés Covarrubias, Alexander W. Grindal, Margarete K. Akens, Lothar Lilge, and Robin S. Marjoribanks
Biomed. Opt. Express 7(6) 2331-2341 (2016)

Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification

Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung, and Youn-Il Park
Opt. Express 16(17) 12715-12725 (2008)

Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold

Igor A. Makhotkin, Igor Milov, Jaromir Chalupský, Kai Tiedtke, Hartmut Enkisch, Gosse de Vries, Frank Scholze, Frank Siewert, Jacobus M. Sturm, Konstantin V. Nikolaev, Robbert W. E. van de Kruijs, Mark A. Smithers, Henk A. G. M. van Wolferen, Enrico G. Keim, Eric Louis, Iwanna Jacyna, Marek Jurek, Dorota Klinger, Jerzy B. Pelka, Libor Juha, Věra Hájková, Vojtěch Vozda, Tomáš Burian, Karel Saksl, Bart Faatz, Barbara Keitel, Elke Plönjes, Siegfried Schreiber, Sven Toleikis, Rolf Loch, Martin Hermann, Sebastian Strobel, Rilpho Donker, Tobias Mey, and Ryszard Sobierajski
J. Opt. Soc. Am. B 35(11) 2799-2805 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
    [PubMed]
  2. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
    [Crossref] [PubMed]
  3. F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
    [Crossref]
  4. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [Crossref] [PubMed]
  5. C. B. Schaffer and E. Mazur, “Micromachining using ultrashort pulses from a laser oscillator,” Opt. Photonics News 12(4), 20–23 (2001).
    [Crossref]
  6. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
    [Crossref]
  7. T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y.-I. Park, “Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification,” Opt. Express 16(17), 12715–12725 (2008).
    [Crossref] [PubMed]
  8. F. A. Duck, “Physical properties of Tissue,” in A Comprehensive Reference Book (Academic, 1990).
  9. S. C. Jeoung, H.-S. Lee, J. S. Yahng, H. K. Lee, H. Y. Moon, K. J. Kim, D. G. Lee, D. H. Park, Y. S. Yu, and S. J. Ji, “Micro-structuring of CIGS thin-film coated on Mo back contact by ultrafast laser ‘rail-roading’ patterning,” Opt. Express 19(18), 16730–16738 (2011).
    [Crossref] [PubMed]
  10. J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
    [Crossref] [PubMed]
  11. B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
    [Crossref]
  12. I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
    [PubMed]
  13. P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
    [Crossref] [PubMed]
  14. P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
    [Crossref] [PubMed]
  15. S. MacRae, “Thin-flap femtosecond LASIK,” J. Refract. Surg. 26(7), 469–470 (2010).
    [PubMed]
  16. P. S. Binder, “Femtosecond applications for anterior segment surgery,” Eye Contact Lens 36(5), 282–285 (2010).
    [Crossref] [PubMed]
  17. G. Sutton and C. Hodge, “Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases,” J. Refract. Surg. 24(8), 802–806 (2008).
    [PubMed]
  18. G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30(4), 804–811 (2004).
    [Crossref] [PubMed]
  19. G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
    [Crossref] [PubMed]
  20. M. Han, G. Giese, L. Zickler, H. Sun, and J. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
    [Crossref] [PubMed]
  21. K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
    [Crossref] [PubMed]

2014 (1)

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

2011 (2)

2010 (3)

S. MacRae, “Thin-flap femtosecond LASIK,” J. Refract. Surg. 26(7), 469–470 (2010).
[PubMed]

P. S. Binder, “Femtosecond applications for anterior segment surgery,” Eye Contact Lens 36(5), 282–285 (2010).
[Crossref] [PubMed]

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

2009 (1)

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[Crossref] [PubMed]

2008 (2)

G. Sutton and C. Hodge, “Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases,” J. Refract. Surg. 24(8), 802–806 (2008).
[PubMed]

T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y.-I. Park, “Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification,” Opt. Express 16(17), 12715–12725 (2008).
[Crossref] [PubMed]

2006 (1)

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

2005 (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

2004 (2)

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30(4), 804–811 (2004).
[Crossref] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[Crossref] [PubMed]

2003 (1)

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

2001 (3)

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref] [PubMed]

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

C. B. Schaffer and E. Mazur, “Micromachining using ultrashort pulses from a laser oscillator,” Opt. Photonics News 12(4), 20–23 (2001).
[Crossref]

1999 (1)

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

1996 (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

1985 (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

Alivisatos, A. P.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[Crossref] [PubMed]

Backus, S.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Bille, J.

Binder, P. S.

P. S. Binder, “Femtosecond applications for anterior segment surgery,” Eye Contact Lens 36(5), 282–285 (2010).
[Crossref] [PubMed]

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Brodeur, A.

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Dishler, J. G.

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

Ferincz, I.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Friedman, B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

García, J. F.

Giese, G.

Grentzelos, M. A.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Han, M.

Hodge, C.

G. Sutton and C. Hodge, “Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases,” J. Refract. Surg. 24(8), 802–806 (2008).
[PubMed]

Horvath, C.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

Ifarraguerri, A. I.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Ignacio, T. S.

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

Ippen, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

Jeoung, S. C.

Ji, S. J.

Juhasz, T.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Kankariya, V. P.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Kapteyn, H.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Kezirian, G. M.

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30(4), 804–811 (2004).
[Crossref] [PubMed]

Kim, K. J.

Kim, P.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Kiss, K.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Kleinfeld, D.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Kontadakis, G. A.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Kurtz, R.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Kurtz, R. M.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Kymionis, G. D.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Lee, D. G.

Lee, H. K.

Lee, H.-S.

Lei, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Lev-Ram, V.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

Loesel, F. H.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

MacRae, S.

S. MacRae, “Thin-flap femtosecond LASIK,” J. Refract. Surg. 26(7), 469–470 (2010).
[PubMed]

Manousaki, A.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref] [PubMed]

C. B. Schaffer and E. Mazur, “Micromachining using ultrashort pulses from a laser oscillator,” Opt. Photonics News 12(4), 20–23 (2001).
[Crossref]

Merkle, M. G.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[Crossref] [PubMed]

Moon, H. Y.

Murnane, M.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Naoumidi, I.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

Pallikaris, I. G.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

Panagopoulou, S.

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Park, D. H.

Park, Y.-I.

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

Ratkay-Traub, I.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Rootman, D. S.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Sayegh, S.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Schaffer, C. B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref] [PubMed]

C. B. Schaffer and E. Mazur, “Micromachining using ultrashort pulses from a laser oscillator,” Opt. Photonics News 12(4), 20–23 (2001).
[Crossref]

Shin, H. J.

Squier, J. A.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Steinert, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

Stonecipher, K. G.

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30(4), 804–811 (2004).
[Crossref] [PubMed]

Suarez, C.

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Suárez, C.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Sun, H.

Sutton, G.

G. Sutton and C. Hodge, “Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases,” J. Refract. Surg. 24(8), 802–806 (2008).
[PubMed]

Sutton, G. L.

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Tao, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Thompson, B. D.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Tien, A.

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Tsai, P. S.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Tsien, R. Y.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

Wittenberg, J. S.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[Crossref] [PubMed]

Wu, B.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Xiong, Q.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Yahng, J. S.

Yoon, T. O.

Yu, Y. S.

Zickler, L.

Appl. Phys. B-Lasers Opt. (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005).
[Crossref]

Appl. Surf. Sci. (1)

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Br. J. Ophthalmol. (1)

G. D. Kymionis, G. A. Kontadakis, I. Naoumidi, V. P. Kankariya, S. Panagopoulou, A. Manousaki, M. A. Grentzelos, and I. G. Pallikaris, “Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome,” Br. J. Ophthalmol. 98(1), 133–137 (2014).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol. 22(4), 238–244 (2011).
[Crossref] [PubMed]

Eye Contact Lens (1)

P. S. Binder, “Femtosecond applications for anterior segment surgery,” Eye Contact Lens 36(5), 282–285 (2010).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26(12), 1771–1777 (1985).
[PubMed]

J. Cataract Refract. Surg. (2)

G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg. 30(4), 804–811 (2004).
[Crossref] [PubMed]

K. G. Stonecipher, J. G. Dishler, T. S. Ignacio, and P. S. Binder, “Transient light sensitivity after femtosecond laser flap creation: Clinical findings and management,” J. Cataract Refract. Surg. 32(1), 91–94 (2006).
[Crossref] [PubMed]

J. Refract. Surg. (2)

S. MacRae, “Thin-flap femtosecond LASIK,” J. Refract. Surg. 26(7), 469–470 (2010).
[PubMed]

G. Sutton and C. Hodge, “Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases,” J. Refract. Surg. 24(8), 802–806 (2008).
[PubMed]

Lasers Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Neuron (1)

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[Crossref] [PubMed]

Ophthalmol. Clin. North Am. (1)

I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, “Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation,” Ophthalmol. Clin. North Am. 14(2), 347–355 (2001).
[PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photonics News (1)

C. B. Schaffer and E. Mazur, “Micromachining using ultrashort pulses from a laser oscillator,” Opt. Photonics News 12(4), 20–23 (2001).
[Crossref]

Phys. Rev. Lett. (1)

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

F. H. Loesel, A. Tien, S. Backus, H. Kapteyn, M. Murnane, R. M. Kurtz, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” Proc. SPIE 3565, 116–123 (1999).
[Crossref]

Other (1)

F. A. Duck, “Physical properties of Tissue,” in A Comprehensive Reference Book (Academic, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram for laser ablation of PDMS substrate. Femtosecond laser beam is delivered and focused on PDMS surface through objective lens. The sample surface was illuminated with a white-light emitting diode (LED). During and after laser exposure the optical images of PDMS surface were captured by a fast camera. (b) Beam profile of the laser at sample position without a focusing lens. The image size is 11.3 mm x 6.0 mm.
Fig. 2
Fig. 2 (a) A series of optical images as a function of the delay time after exposing single-shot laser pulse on PDMS surface. The surface optical images were captured by a fast camera with a frame rate of 10,000 per second just after laser irradiation. (b) AFM topography of the crater formed with a laser fluence of 4.8 J/cm2. (c) The crater diameter as a function of delay time at two different laser fluences of 4.8 J/cm2 (black circles) and 8.8 J/cm2 (red squares). For the results with 4.8 J/cm2, the experimental data can be fitted by single exponential function with a time constant of 0.3 ms. For the crater size formed with 8.8 J/cm2, however, in addition to a rise component with a time constant of 0.1 ms two different relaxation time constants of about 0.25 ms and 2.0 ms need to fit the temporal profiles.
Fig. 3
Fig. 3 AFM topography images PDMS surface irradiated with fs-laser pulses. The laser fluence was kept to be 4.8 J/cm2. The craters were formed with inter-pulse intervals of Δt = 5.0 ms (a), Δt = 0.2 ms (b), and Δt = 0.02 ms (c). For each intervals, the inter-spot distance between the successive laser spots was also varied (dspot-spot = 15 μm, 12 μm, and 10 μm). The direction of laser polarization is presented by both sides of arrow bar.
Fig. 4
Fig. 4 Plot of height difference H(Δt) as a function of inter-pulse interval (a) and overlapped length (L(Δt)) (b) with varying the inter-spot distance ( = dspot-spot) of 10 μm (filled red circle), 12 μm (open green circle), 15 μm (filled black square), and 20 μm (open blue square). The laser fluence is kept to be 4.8 J/cm2.
Fig. 5
Fig. 5 Conceptual diagrams for the cross-sectional height variation of the craters at t = ∆t (a) and infinite time delay (b). The first pulse (yellow) formed a crater (solid-line inverted trapezoid) and then its size increased due to tensile forces after time = ∆t (dash-line inverted trapezoid). If the second pulse (red) remove the portion of PDMS inside L(∆t), overlapped length between the two successive pulses, the center portion between the two craters after infinite time (b) should be eventually affected by not only inter-pulse intervals (∆t) but also inter-spot distance, dspot-spot.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L( Δt ) = d( Δt )/2 + w laser d spotspot  >   0
H( Δt ) =aL( Δt )+ b

Metrics