Abstract

We experimentally demonstrate temperature-tuned and gain-assisted surface-plasmonic coherent perfect absorbers. In these devices, coherent perfect absorption (CPA) is supported by balancing the absorber’s radiative and non-radiative decay rates under thermal tuning of free-electron collision frequency in the Ag layer and optical tuning of the amplification rate in the adjacent dielectric film with optical gain, respectively. The results show that these methods are experimentally feasible and applicable to various CPA configurations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain-assisted critical coupling for high-performance coherent perfect absorbers

Jae Woong Yoon, Myoung Jin Jung, and Seok Ho Song
Opt. Lett. 40(10) 2309-2312 (2015)

PT-symmetric coherent perfect absorber with graphene

Mustafa Sarısaman and Murat Tas
J. Opt. Soc. Am. B 35(10) 2423-2432 (2018)

Tunable and broadband coherent perfect absorption by ultrathin black phosphorus metasurfaces

Tianjing Guo and Christos Argyropoulos
J. Opt. Soc. Am. B 36(11) 2962-2971 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref] [PubMed]
  2. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  3. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
    [Crossref] [PubMed]
  4. J. Zhang, K. F. McDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  5. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21(23), 27652–27671 (2013).
    [Crossref] [PubMed]
  6. T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
    [Crossref] [PubMed]
  7. X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  8. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
    [Crossref] [PubMed]
  9. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
    [Crossref]
  10. J. A. Giese, J. W. Yoon, B. R. Wenner, J. W. Allen, M. S. Allen, and R. Magnusson, “Guided-mode resonant coherent light absorbers,” Opt. Lett. 39(3), 486–488 (2014).
    [Crossref] [PubMed]
  11. S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
    [Crossref]
  12. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref] [PubMed]
  13. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
    [Crossref]
  14. J. W. Yoon, M. J. Jung, and S. H. Song, “Gain-assisted critical coupling for high-performance coherent perfect absorbers,” Opt. Lett. 40(10), 2309–2312 (2015).
    [Crossref]
  15. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [Crossref]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008).
    [Crossref] [PubMed]
  18. P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures – some new correlations,” Phys. Status Solidi A. 55(2), K159–K162 (1979).
  19. J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
    [Crossref]
  20. X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
    [Crossref]
  21. I. De Leon and P. Berini, “Modeling surface plasmon-polariton gain in planar metallic structures,” Opt. Express 17(22), 20191–20202 (2009).
    [Crossref] [PubMed]
  22. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [Crossref]
  23. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
    [Crossref] [PubMed]
  24. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  25. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
    [Crossref]
  26. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
    [Crossref] [PubMed]
  27. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
    [Crossref] [PubMed]

2015 (3)

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. W. Yoon, M. J. Jung, and S. H. Song, “Gain-assisted critical coupling for high-performance coherent perfect absorbers,” Opt. Lett. 40(10), 2309–2312 (2015).
[Crossref]

2014 (6)

J. A. Giese, J. W. Yoon, B. R. Wenner, J. W. Allen, M. S. Allen, and R. Magnusson, “Guided-mode resonant coherent light absorbers,” Opt. Lett. 39(3), 486–488 (2014).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
[Crossref] [PubMed]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

J. Zhang, K. F. McDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

2011 (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (1)

2006 (1)

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

1998 (2)

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

1982 (1)

1979 (1)

P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures – some new correlations,” Phys. Status Solidi A. 55(2), K159–K162 (1979).

1976 (1)

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

Allen, J. W.

Allen, M. S.

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

Bender, C. M.

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Berini, P.

Boettcher, S.

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Bolduc, E.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Bruck, R.

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Cao, Z.

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

Chandezon, J.

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Cornet, G.

Couteau, C.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

De Leon, I.

Dupuis, M.

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Faccio, D.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Fang, X.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Feng, L.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Feng, Q.

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Giese, J. A.

Guo, C.

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Hang, Z. H.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Heitz, J. J. F.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Hou, B.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Hu, C.

Huang, C.

Jeffers, J.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Jung, M. J.

Kim, J.-H.

Koh, G. M.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Kottos, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Lai, Y.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Leach, J.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Li, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Li, X.

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Liu, K.

Lu, W.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Luo, J.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Luo, X.

Ma, R.-M.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Ma, X.

MacDonald, K. F.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Magnusson, R.

Maystre, D.

McDonald, K. F.

J. Zhang, K. F. McDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

McKay, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

Muskens, O. L.

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Ou, J. Y.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Pathak, P. D.

P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures – some new correlations,” Phys. Status Solidi A. 55(2), K159–K162 (1979).

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Pu, M.

Qin, S.

Ramezani, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Rao, S. M.

Rayne, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

Roger, T.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Seol, K. H.

Shah, N. P.

P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures – some new correlations,” Phys. Status Solidi A. 55(2), K159–K162 (1979).

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Shen, Q.

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

Soci, C.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Song, S. H.

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Tsai, D. P.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Valente, J.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Vezzoli, S.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

Wang, M.

Wang, Y.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Wenner, B. R.

Westerberg, N.

Wong, Z. J.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Yang, Y.

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

Ye, W.

Yoon, J.

Yoon, J. W.

J. W. Yoon, M. J. Jung, and S. H. Song, “Gain-assisted critical coupling for high-performance coherent perfect absorbers,” Opt. Lett. 40(10), 2309–2312 (2015).
[Crossref]

J. A. Giese, J. W. Yoon, B. R. Wenner, J. W. Allen, M. S. Allen, and R. Magnusson, “Guided-mode resonant coherent light absorbers,” Opt. Lett. 39(3), 486–488 (2014).
[Crossref] [PubMed]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Yuan, X.

Zhang, J.

Zhang, X.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

Zhao, Z.

Zheludev, N. I.

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Zhang, K. F. McDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhu, Z.

ACS Photonics (1)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Light Sci. Appl. (1)

J. Zhang, K. F. McDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Mater. Lett. (1)

X. Li, Z. Cao, Q. Shen, and Y. Yang, “Influence of dopant concentration on thermos-optic properties of PMMA composite,” Mater. Lett. 60(9–10), 1238–1241 (2006).
[Crossref]

Nat. Commun. (1)

T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, and D. Faccio, “Coherent perfect absorption in deeply subwavelength films in the single-photon regime,” Nat. Commun. 6, 7031 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (3)

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: super performance of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

Phys. Rev. Lett. (4)

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109(25), 257402 (2012).
[Crossref] [PubMed]

Phys. Status Solidi A. (1)

P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures – some new correlations,” Phys. Status Solidi A. 55(2), K159–K162 (1979).

Science (2)

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346(6212), 972–975 (2014).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Surface-plasmon resonance grating structure for a CPA element. (a) Schematic of the structure and light coupling configuration. (b) Two-port resonator model describing the system illustrated in (a).
Fig. 2
Fig. 2 Geometrical-parameter dependence of the net absorbance and partial decay rates for a specific design with period Λ = 700 nm and PMMA over-layer thickness t = 160 nm. (a) Net in-phase absorbance Anet(ϕ + ϕ0 = 0) as a function of grating depth d and relative ridge width (fill factor) f = g/Λ. (b) Partial decay rates γrad and γnr as separate functions of d and f. In (b), fill factor is fixed at f = 0.3 for γrad(d) and γnr(d) indicated by the red solid and red dashed curves, respectively, while grating depth is fixed at d = 23 nm for γrad(f) and γnr(f) indicated by blue solid and blue dotted curves, respectively.
Fig. 3
Fig. 3 (a) AFM profile of the fabricated Ag grating and estimated parameters. (b) Schematic of measurement set-up for temperature-tuned CPA measurement.
Fig. 4
Fig. 4 (a) Measured γnr and γrad for the sample showing in Fig. 3(b) as functions of temperature. (b) Measured in-phase net absorbance Anet(ϕ + ϕ0 = 2) as a function of temperature. (c) Measured phase-dependent outgoing powers normalized by the total incoming power. Note that Ptot = P1 + P2 and the in-phase net absorbance Anet(ϕ + ϕ0 = 2) is taken by the relation Anet(ϕ + ϕ0 = 2) = 1–Ptot at the Ptot-minimum in the phase-dependent outgoing-power measurement.
Fig. 5
Fig. 5 (a) Modification of photoluminescence on the Ag surface under optical pumping at 532 nm. (b) Measured effective gain coefficient as a function of pumping density. Set-up arrangement for effective gain-coefficient measurement is shown in the inset. We use a 47-nm-thick Ag film and 1-μm-thick PMMA over-layer doped with Rh6G dye at a concentration of 20 mM. (c) Calculated γnr and γrad as functions of effective gain coefficient for a structure consisting of a 1-μm-thick PMMA over-layer doped with Rh6G dye at a concentration 20 mM and an Ag grating with a period of 647 nm, fill factor of 0.28, and depth of 18 nm.
Fig. 6
Fig. 6 (a) AFM profile of the fabricated Ag grating and estimated parameters. (b) Schematic of measurement set-up for the temperature-tuned CPA scheme. Measured correlation between (c) pump and (d) coherent probe intensities for the fabricated device. The probe intensity values in (d) are normalized by the total incoming probe power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ m = k SP 2πm/Λ,
A net = 4( γ A γ G ) γ rad (ω ω 0 ) 2 + ( γ rad + γ A γ G ) 2 η 1 I 1 + η 2 I 2 +2 η 1 η 2 I 1 I 2 cos( ϕ+ ϕ 0 ) I 1 + I 2 ,
A net ( ω 0 )=12 η 1 η 2 [ 1cos( ϕ+ ϕ 0 ) ].
A net ( ω 0 )= 4( γ A γ G ) γ rad γ rad + γ A γ G 2 η 1 η 2 [ 1+cos( ϕ+ ϕ 0 ) ].
γ nr (T) T T 0 ω Ag Im[ ε Ag ( T 0 ) ]| E SPP | 2 d 3 r ,

Metrics