Abstract

A ppb-level formaldehyde (H2CO) sensor was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) room temperature interband cascade laser (ICL) emitting at 3.59 μm and a miniature dense pattern multipass gas cell with >50 m optical path length. Performance of the sensor was investigated with two measurement schemes: direct absorption (DAS) and wavelength modulation spectroscopy (WMS). With an integration time of less than 1.5 second, a detection limit of ~3 ppbv for H2CO measurement with precision of 1.25 ppbv for DAS and 0.58 ppbv for WMS, respectively, was achieved without zero air based background subtraction. An Allan-Werle variance analysis indicated that the precisions can be further improved to 0.26 ppbv @ 300s for DAS and 69 pptv @ 90 s for WMS, respectively. A side-by-side comparison between two measurement schemes is also discussed in detail.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde

David G. Lancaster, Alan Fried, Bryan Wert, Bruce Henry, and Frank K. Tittel
Appl. Opt. 39(24) 4436-4443 (2000)

Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser

Yingchun Cao, Nancy P. Sanchez, Wenzhe Jiang, Robert J. Griffin, Feng Xie, Lawrence C. Hughes, Chung-en Zah, and Frank K. Tittel
Opt. Express 23(3) 2121-2132 (2015)

References

  • View by:
  • |
  • |
  • |

  1. OSHA Standards – 29 CFR 1910.1048 (2006).
  2. R. E. Crossgrove, Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol.1–4 (National Academy of Sciences, 1994–2000).
  3. B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
    [Crossref]
  4. J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004).
    [Crossref] [PubMed]
  5. H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
    [PubMed]
  6. H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
    [Crossref]
  7. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
    [Crossref] [PubMed]
  8. D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000).
    [Crossref] [PubMed]
  9. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
    [Crossref]
  10. M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
    [Crossref]
  11. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
    [Crossref]
  12. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
    [Crossref]
  13. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
    [Crossref] [PubMed]
  14. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
    [Crossref]
  15. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
    [Crossref]
  16. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref] [PubMed]
  17. S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt. 51(25), 6009–6013 (2012).
    [Crossref] [PubMed]
  18. G. Overton, “METROLOGY: New multipass gas cells beat conventional designs,” Laser Focus World, August issue (2013).
  19. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
    [Crossref]
  20. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [Crossref]
  21. P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [Crossref]
  22. http://en.wikipedia.org/wiki/Accuracy_and_precision .
  23. D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
    [Crossref]
  24. C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
    [Crossref]

2015 (1)

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

2014 (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

2013 (1)

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

2012 (1)

2011 (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

2010 (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

2009 (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

2007 (1)

2006 (4)

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

2004 (1)

2003 (1)

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

2002 (1)

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

2001 (1)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

2000 (1)

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

1989 (1)

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

1983 (1)

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Abell, J.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Ajtai, T.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

Angelmahr, M.

M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
[Crossref]

Angevine, W. M.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Atlas, E.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Bakhirkin, Y.

Bakhirkin, Y. A.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

Bauer, A.

Bewley, W. W.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Bräuchle, C.

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

Canedy, C. L.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Chen, J.

Curl, R. F.

Dahnke, H.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

De Natale, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

Donnelly, S. G.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Fehsenfeld, F. C.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Fischer, M.

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Fraser, M. P.

Fried, A.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000).
[Crossref] [PubMed]

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Frost, G. J.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

Gehrtz, M.

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

Goldan, P. D.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Hansel, A.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Harman, T.

Hastie, D. R.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Henry, B.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000).
[Crossref] [PubMed]

Hering, P.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

Hess, P.

M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
[Crossref]

Hill, C. J.

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

Höfling, S.

Holloway, J. S.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Hubler, G.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Iguchi, T.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Jahjah, M.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Kim, C. S.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Kim, M.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Kleinermanns, K.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

Kluczynski, P.

Koeth, J.

Krzempek, K.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Kuster, W. C.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Lancaster, D. G.

Lee, H.

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Lewicki, R.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Li, J.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Lundqvist, S.

Mackay, G. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Maddaloni, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

Merritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Meyer, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Miklos, A.

M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
[Crossref]

Miller, J. H.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Mürtz, M.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

Nähle, L.

Neuman, J. A.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Nicks, D. K.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Parrish, D. D.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Potter, W.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Richter, D.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

Ridley, B. A.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Roller, C.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

Ryerson, T. B.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Schauffler, S.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Schiff, H. I.

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

So, S.

Spuler, S. M.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

Stefanski, P.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Stutz, J.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Sueper, D. T.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Taubman, M. S.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

Thomazy, D.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Tittel, F.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Tittel, F. K.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004).
[Crossref] [PubMed]

D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000).
[Crossref] [PubMed]

Trainer, M.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

von Basum, G.

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

von Edlinger, M.

Vurgaftman, I.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Walega, J.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

Walega, J. G.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

Weibring, P.

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

Weih, R.

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

Wert, B.

Wert, B. P.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Wiedinmyer, C.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Wisthaler, A.

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Wysocki, G.

Yang, R. Q.

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

Anal. Methods (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (10)

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm,” Appl. Phys. B 85(2-3), 219–222 (2006).
[Crossref]

M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level,” Appl. Phys. B 85(2-3), 285–288 (2006).
[Crossref]

H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Mürtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 75(2-3), 311–316 (2002).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[Crossref]

D. Richter, P. Weibring, J. G. Walega, A. Fried, S. M. Spuler, and M. S. Taubman, “Compact highly sensitive multi-species airborne mid-IR spectrometer,” Appl. Phys. B 119(1), 119–131 (2015).
[Crossref]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006).
[Crossref]

Appl. Spectrosc. (1)

Environ. Sci. Technol. (1)

H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, and B. A. Ridley, “Tunable diode laser systems for measuring trace gases intropospheric air,” Environ. Sci. Technol. 17(8), 352A–364A (1983).
[PubMed]

J. Geophys. Res. (1)

B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M. Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks, J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer, and A. Wisthaler, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res. 108(D3), 4104 (2003).
[Crossref]

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Opt. Eng. (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Other (4)

G. Overton, “METROLOGY: New multipass gas cells beat conventional designs,” Laser Focus World, August issue (2013).

OSHA Standards – 29 CFR 1910.1048 (2006).

R. E. Crossgrove, Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol.1–4 (National Academy of Sciences, 1994–2000).

http://en.wikipedia.org/wiki/Accuracy_and_precision .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

HITRAN simulation of the H2CO absorption spectrum within the ICL tuning range and potential interference from other atmospheric species (CH4, N2O and O3). The total pressure is 200 Torr at 296 K temperature.

Fig. 2
Fig. 2

(a) L-I-V curve of the 3.599 μm CW, DFB ICL; (b) DFB ICL current tuning at different DFB ICL operating temperatures.

Fig. 3
Fig. 3

Schematic of H2CO gas sensor system based on a novel compact multipass gas cell using a 3.599 μm CW, DFB, ICL excitation source.

Fig. 4
Fig. 4

Typical example of fitting strategy for a direct absorption spectrum of H2CO at a 208 ppbv concentration level.

Fig. 5
Fig. 5

(a) H2CO concentration response of sensor operating in DAS; (b) Linear dependence of the measured concentration as a function of the H2CO nominal concentrations.

Fig. 6
Fig. 6

Allan variance calculated from a direct absorption spectrum measurements of H2CO for a concentration of 224 ppbv with a 0.5 s sampling rate.

Fig. 7
Fig. 7

An example of fitting strategy for H2CO 2f wavelength modulation spectrum for a concentration of 11 ppbv.

Fig. 8
Fig. 8

(a) H2CO concentration response of the sensor with 2f-WMS; (b) Linear dependence of the measured concentration as a function of the H2CO nominal concentration.

Fig. 9
Fig. 9

Allan variance calculated from a 2f spectrum measurement of H2CO with a concentration of 29 ppbv with a 1.5 s sampling rate.

Metrics