Abstract

We have experimentally observed the discrete diffraction of light in a coherently prepared multi-level atomic medium. This is achieved by launching a probe beam into an optical lattice induced from the interference of two coupling beams. The diffraction pattern can be controlled through the atomic parameters such as two-photon detuning and temperature, as well as orientations of the coupling and probe beams. Clear diffraction patterns occur only near the two-photon resonance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of diffraction pattern in two-dimensional optically induced atomic lattice

Jinpeng Yuan, Chaohua Wu, Lirong Wang, Gang Chen, and Suotang Jia
Opt. Lett. 44(17) 4123-4126 (2019)

Optically induced atomic lattice with tunable near-field and far-field diffraction patterns

Feng Wen, Huapeng Ye, Xun Zhang, Wei Wang, Shuoke Li, Hongxing Wang, Yanpeng Zhang, and Cheng-wei Qiu
Photon. Res. 5(6) 676-683 (2017)

Formation of discrete solitons in light-induced photonic lattices

Zhigang Chen, Hector Martin, Eugenia D. Eugenieva, Jingjun Xu, and Jianke Yang
Opt. Express 13(6) 1816-1826 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
    [Crossref] [PubMed]
  2. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
    [Crossref]
  3. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
    [Crossref]
  4. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
    [Crossref]
  5. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
    [Crossref] [PubMed]
  6. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
    [Crossref] [PubMed]
  7. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
    [Crossref] [PubMed]
  8. Z. Chen and H. Martin, “Waveguides and waveguide arrays formed by incoherent light in photorefractive materials,” Opt. Mater. 23(1-2), 235–241 (2003).
    [Crossref]
  9. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
    [Crossref] [PubMed]
  10. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
    [Crossref] [PubMed]
  11. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
    [Crossref] [PubMed]
  12. R. Kapoor and G. S. Agarwal, “Theory of electromagnetically induced waveguides,” Phys. Rev. A 61(5), 053818 (2000).
    [Crossref]
  13. P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
    [Crossref] [PubMed]
  14. A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
    [Crossref]
  15. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [Crossref]
  16. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45(3), 471–503 (1998).
    [Crossref]
  17. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
    [Crossref] [PubMed]
  18. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  19. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
    [Crossref] [PubMed]
  20. J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
    [Crossref]
  21. H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
    [Crossref]
  22. Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20(2), 1219–1229 (2012).
    [Crossref] [PubMed]
  23. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
    [Crossref]
  24. G. C. Cardoso and J. W. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65(3), 033803 (2002).
    [Crossref]
  25. T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90(18), 183901 (2003).
    [Crossref] [PubMed]
  26. Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
    [Crossref]
  27. U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
    [Crossref] [PubMed]
  28. J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
    [Crossref]
  29. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
    [Crossref] [PubMed]
  30. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
    [Crossref] [PubMed]
  31. Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
    [Crossref]

2013 (3)

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
[Crossref] [PubMed]

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

2012 (2)

Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20(2), 1219–1229 (2012).
[Crossref] [PubMed]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

2011 (1)

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

2010 (1)

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

2009 (1)

P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
[Crossref] [PubMed]

2008 (1)

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

2007 (1)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

2006 (2)

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

2004 (1)

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

2003 (4)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

Z. Chen and H. Martin, “Waveguides and waveguide arrays formed by incoherent light in photorefractive materials,” Opt. Mater. 23(1-2), 235–241 (2003).
[Crossref]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90(18), 183901 (2003).
[Crossref] [PubMed]

2002 (3)

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref] [PubMed]

G. C. Cardoso and J. W. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65(3), 033803 (2002).
[Crossref]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

2000 (1)

R. Kapoor and G. S. Agarwal, “Theory of electromagnetically induced waveguides,” Phys. Rev. A 61(5), 053818 (2000).
[Crossref]

1999 (4)

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

1998 (2)

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45(3), 471–503 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

1995 (3)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Agarwal, G. S.

R. Kapoor and G. S. Agarwal, “Theory of electromagnetically induced waveguides,” Phys. Rev. A 61(5), 053818 (2000).
[Crossref]

Aitchison, J. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Alexander, T. J.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

André, A.

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref] [PubMed]

Artoni, M.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Bräuer, A.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

Bromberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Cardoso, G. C.

G. C. Cardoso and J. W. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65(3), 033803 (2002).
[Crossref]

Chen, H.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Chen, Z.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

Z. Chen and H. Martin, “Waveguides and waveguide arrays formed by incoherent light in photorefractive materials,” Opt. Mater. 23(1-2), 235–241 (2003).
[Crossref]

Christodoulides, D. N.

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Dannberg, P.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

Desyatnikov, A. S.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

Du, S.

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Eisenberg, H. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Elflein, W.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

El-Ganainy, R.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Fleischer, J. W.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Friese, M. E. J.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Gao, J.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Garanovich, I. L.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

He, Q.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Heckenberg, N. R.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

Hong, T.

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90(18), 183901 (2003).
[Crossref] [PubMed]

Howell, J. C.

P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
[Crossref] [PubMed]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

Ismail, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kapoor, R.

R. Kapoor and G. S. Agarwal, “Theory of electromagnetically induced waveguides,” Phys. Rev. A 61(5), 053818 (2000).
[Crossref]

Khadka, U.

U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

Krolikowski, W.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

La Rocca, G. C.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Lahini, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Lederer, F.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

Li, C.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Li, Y.

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

Lin, H.

Ling, H.

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Lobino, M.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Longhi, S.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Lukin, M. D.

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref] [PubMed]

Makasyuk, I.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

Makris, K. G.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

Marangos, J. P.

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45(3), 471–503 (1998).
[Crossref]

Martin, H.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

Z. Chen and H. Martin, “Waveguides and waveguide arrays formed by incoherent light in photorefractive materials,” Opt. Mater. 23(1-2), 235–241 (2003).
[Crossref]

Matsuda, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Matthews, J. C. F.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Miri, M.-A.

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

Morandotti, R.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Musslimani, Z. H.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

Neshev, D. N.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

OBrien, J. L.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Ostrovskaya, E. A.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

Pertsch, T.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

Peruzzo, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Peschel, U.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Politi, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Poulios, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Sheng, J.

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
[Crossref] [PubMed]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Silberberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

Starling, D. J.

P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
[Crossref] [PubMed]

Sukhorukov, A. A.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

Tabosa, J. W.

G. C. Cardoso and J. W. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65(3), 033803 (2002).
[Crossref]

Thompson, M. G.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Trompeter, H.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

Truscott, A. G.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

Vudyasetu, P. K.

P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
[Crossref] [PubMed]

Wang, Z.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Wen, J.

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Wörhoff, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Xiao, M.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
[Crossref] [PubMed]

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Xiao, Z. H.

Xu, J.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Xue, Y.

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Yuan, C.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Zheng, H.

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Zheng, L.

Zhou, X. Q.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

J. Mod. Opt. (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45(3), 471–503 (1998).
[Crossref]

Laser Phys. Lett. (1)

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Nature (3)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

Z. Chen and H. Martin, “Waveguides and waveguide arrays formed by incoherent light in photorefractive materials,” Opt. Mater. 23(1-2), 235–241 (2003).
[Crossref]

Phys. Rep. (1)

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Phys. Rev. A (6)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[Crossref] [PubMed]

R. Kapoor and G. S. Agarwal, “Theory of electromagnetically induced waveguides,” Phys. Rev. A 61(5), 053818 (2000).
[Crossref]

J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88(4), 041803 (2013).
[Crossref]

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

G. C. Cardoso and J. W. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65(3), 033803 (2002).
[Crossref]

Phys. Rev. B (1)

Q. He, Y. Xue, M. Artoni, G. C. La Rocca, J. Xu, and J. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73(19), 195124 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (12)

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999).
[Crossref]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96(5), 053903 (2006).
[Crossref] [PubMed]

P. K. Vudyasetu, D. J. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett. 102(12), 123602 (2009).
[Crossref] [PubMed]

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82(7), 1438–1441 (1999).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[Crossref] [PubMed]

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90(18), 183901 (2003).
[Crossref] [PubMed]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref] [PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[Crossref] [PubMed]

U. Khadka, J. Sheng, and M. Xiao, “Spatial domain interactions between ultra-weak optical beams,” Phys. Rev. Lett. 111(22), 223601 (2013).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

Science (1)

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup: PBS, polarization beam splitter; SAS, saturation absorption spectroscopy; EIT, monitoring the two-photon electromagnetically induced transparency condition; λ/2, half-wave plate; (b) The relevant three-level rubidium atomic system; (c) The schematic for generating an optically induced lattice in a hot rubidium vapor cell. (d) Snapshot of the optical lattice in (c)
Fig. 2
Fig. 2 Numerically calculated plots of the spatially modified real (solid line) and imaginary (dashed line) parts of the refractive index modulation, respectively. Here, Δc = −400 MHz, Δp = 390 MHz, and Ωc = 200cos2(x/40).
Fig. 3
Fig. 3 Theoretical simulations of the probe beam propagation. (a) Normal diffraction of a Gaussian beam without the coupling beam; (b) Evolved discrete diffraction of the weak Gaussian beam in an optical lattice.
Fig. 4
Fig. 4 Experimental results of the probe beam’s output intensity images. (a) Output of a Gaussian probe beam propagating through the cell with the coupling beams blocked. (b) Output of a Gaussian probe beam after propagating through an optical lattice.
Fig. 5
Fig. 5 Experimentally observed diffraction patterns of the probe beam propagating through the optical lattice, as the two-photon detuning δ is changed. (a) δ = −10, (b) δ = 0, (c) δ = 10, (d) δ = 20, (e) δ = 30, and (f) δ = 40 MHz, respectively.

Metrics