Abstract

Compact and portable surface plasmon resonance (SPR) biosensors of high sensitivities can be made through integration of discrete components in a single device. We report on a device comprising a vertical cavity light emitting diode (VLED) integrated with gold-based biosensing nanostructures fabricated atop its surface. Coupling of surface plasmon waves was achieved by the introduction of a spacer SiO2 layer located between the light source and the functionalized Au thin film. The SPR signal was extracted in far field with a Au-based nanograting and detected using a custom designed hyperspectral imager. We discuss the performance of a VLED-based SPR device employed for detection of different concentration saltwater solutions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha
Opt. Express 17(26) 23511-23521 (2009)

Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity

Kaiqun Lin, Yonghua Lu, Junxue Chen, Rongsheng Zheng, Pei Wang, and Hai Ming
Opt. Express 16(23) 18599-18604 (2008)

Hyperspectral imaging of diffracted surface plasmons

Dominic Lepage, Alvaro Jiménez, Dominic Carrier, Jacques Beauvais, and Jan J. Dubowski
Opt. Express 18(26) 27327-27335 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
    [Crossref] [PubMed]
  2. J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
    [Crossref] [PubMed]
  3. A. P. F. Turner, “Biosensors: sense and sensibility,” Chem. Soc. Rev. 42(8), 3184–3196 (2013).
    [Crossref] [PubMed]
  4. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).
  5. C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
    [Crossref]
  6. S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
    [Crossref] [PubMed]
  7. Z. Geng, X. Ji, X. Lou, Q. Li, W. Wang, and Z. Li, “A surface plasmon resonance (SPR) sensor chip integrating prism array based on polymer microfabrication,” in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT) (IEEE, 2008), pp. 2561–2564.
  8. K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
    [Crossref] [PubMed]
  9. L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
    [Crossref] [PubMed]
  10. M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
    [Crossref]
  11. R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
    [Crossref] [PubMed]
  12. M. Bora, K. Çelebi, J. Zuniga, C. Watson, K. M. Milaninia, and M. A. Baldo, “Near field detector for integrated surface plasmon resonance biosensor applications,” Opt. Express 17(1), 329–336 (2009).
    [Crossref] [PubMed]
  13. D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
    [Crossref] [PubMed]
  14. D. Lepage and J. J. Dubowski, “Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 91(16), 163106 (2007).
    [Crossref]
  15. D. Lepage and J. J. Dubowski, “Surface plasmon effects induced by uncollimated emission of semiconductor microstructures,” Opt. Express 17(12), 10411–10418 (2009).
    [Crossref] [PubMed]
  16. D. Lepage, A. Jiménez, D. Carrier, J. Beauvais, and J. J. Dubowski, “Hyperspectral imaging of diffracted surface plasmons,” Opt. Express 18(26), 27327–27335 (2010).
    [Crossref] [PubMed]
  17. D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
    [Crossref]
  18. A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
    [Crossref]
  19. D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
    [Crossref]
  20. D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
    [Crossref]
  21. D. D. Jenkins, “Refractive indices of solutions,” Phys. Educ. 17(2), 82–83 (1982).
    [Crossref]
  22. W. M. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27(16), 3341–3343 (1988).
    [Crossref] [PubMed]

2014 (1)

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

2013 (3)

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

A. P. F. Turner, “Biosensors: sense and sensibility,” Chem. Soc. Rev. 42(8), 3184–3196 (2013).
[Crossref] [PubMed]

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

2012 (2)

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

2011 (2)

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
[Crossref] [PubMed]

2007 (2)

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

D. Lepage and J. J. Dubowski, “Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 91(16), 163106 (2007).
[Crossref]

2003 (1)

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

1999 (1)

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

1988 (1)

1982 (1)

D. D. Jenkins, “Refractive indices of solutions,” Phys. Educ. 17(2), 82–83 (1982).
[Crossref]

1962 (1)

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Baldo, M. A.

Bartholomew, D. U.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Beauvais, J.

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, J. Beauvais, and J. J. Dubowski, “Hyperspectral imaging of diffracted surface plasmons,” Opt. Express 18(26), 27327–27335 (2010).
[Crossref] [PubMed]

Biasiol, G.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Boosh, K. S.

M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
[Crossref]

Bora, M.

Bovo, G.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Carrier, D.

Çelebi, K.

Chinowsky, T. M.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Clark, L. C.

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Clime, L.

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

Cramer, J.

M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
[Crossref]

Dandy, D. S.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

De Salvador, D.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Dubowski, J. J.

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, J. Beauvais, and J. J. Dubowski, “Hyperspectral imaging of diffracted surface plasmons,” Opt. Express 18(26), 27327–27335 (2010).
[Crossref] [PubMed]

D. Lepage and J. J. Dubowski, “Surface plasmon effects induced by uncollimated emission of semiconductor microstructures,” Opt. Express 17(12), 10411–10418 (2009).
[Crossref] [PubMed]

D. Lepage and J. J. Dubowski, “Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 91(16), 163106 (2007).
[Crossref]

Elkind, J. L.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Fujii, T.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Gaio, M.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Glennon, J. D.

J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
[Crossref] [PubMed]

Gobi, K. V.

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Iwasaka, H.

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Jenkins, D. D.

D. D. Jenkins, “Refractive indices of solutions,” Phys. Educ. 17(2), 82–83 (1982).
[Crossref]

Jimenez, A.

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

Jiménez, A.

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, J. Beauvais, and J. J. Dubowski, “Hyperspectral imaging of diffracted surface plasmons,” Opt. Express 18(26), 27327–27335 (2010).
[Crossref] [PubMed]

Johnston, M. M. W.

M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
[Crossref]

Kaiser, R.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Kim, S. J.

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Kurita, R.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Lear, K. L.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Lepage, D.

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
[Crossref]

D. Lepage, A. Jiménez, D. Carrier, J. Beauvais, and J. J. Dubowski, “Hyperspectral imaging of diffracted surface plasmons,” Opt. Express 18(26), 27327–27335 (2010).
[Crossref] [PubMed]

D. Lepage and J. J. Dubowski, “Surface plasmon effects induced by uncollimated emission of semiconductor microstructures,” Opt. Express 17(12), 10411–10418 (2009).
[Crossref] [PubMed]

D. Lepage and J. J. Dubowski, “Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 91(16), 163106 (2007).
[Crossref]

Luong, J. H. T.

J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
[Crossref] [PubMed]

Lyons, C.

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Maggioni, G.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Male, K. B.

J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
[Crossref] [PubMed]

Malic, L.

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

Massari, M.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Mestas, S. P.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Milaninia, K. M.

Miura, N.

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Morpurgo, M.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Morton, K.

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

Nakamoto, K.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Nakayama, T.

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

Nishida, M.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Niwa, O.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Ongarello, T.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Quinn, J. G.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Rahman, A. B.

Romanato, F.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Ruffato, G.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Safaisini, R.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Sakurai, M.

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

Sammito, D.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Silvestri, D.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Stokbro, K.

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

Tanaka, H.

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Thirstrup, C.

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

Turner, A. P. F.

A. P. F. Turner, “Biosensors: sense and sensibility,” Chem. Soc. Rev. 42(8), 3184–3196 (2013).
[Crossref] [PubMed]

Veres, T.

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

Watson, C.

Wilson, D. M.

M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
[Crossref]

Yan, R.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Yuan, G.

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Yunus, W. M.

Zilio, P.

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Zuniga, J.

Ann. N. Y. Acad. Sci. (1)

L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci. 102(1), 29–45 (1962).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Lepage and J. J. Dubowski, “Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 91(16), 163106 (2007).
[Crossref]

Biosens. Bioelectron. (1)

S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka, and N. Miura, “Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes,” Biosens. Bioelectron. 23(5), 701–707 (2007).
[Crossref] [PubMed]

Biotechnol. Adv. (1)

J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnol. Adv. 26(5), 492–500 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. P. F. Turner, “Biosensors: sense and sensibility,” Chem. Soc. Rev. 42(8), 3184–3196 (2013).
[Crossref] [PubMed]

Lab Chip (2)

L. Malic, K. Morton, L. Clime, and T. Veres, “All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing,” Lab Chip 13(5), 798–810 (2013).
[Crossref] [PubMed]

R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, “Label-free silicon photonic biosensor system with integrated detector array,” Lab Chip 9(15), 2163–2168 (2009).
[Crossref] [PubMed]

Light Sci. Appl. (2)

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

D. Lepage, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Real-time detection of influenza A virus using semiconductor nanophotonics,” Light Sci. Appl. 2(4), e62 (2013).
[Crossref]

Microelectron. Eng. (1)

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng. 93, 91–94 (2012).
[Crossref]

Nanoscale (2)

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

D. Sammito, D. De Salvador, P. Zilio, G. Biasiol, T. Ongarello, M. Massari, G. Ruffato, M. Morpurgo, D. Silvestri, G. Maggioni, G. Bovo, M. Gaio, and F. Romanato, “Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors,” Nanoscale 6(3), 1390–1397 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Educ. (1)

D. D. Jenkins, “Refractive indices of solutions,” Phys. Educ. 17(2), 82–83 (1982).
[Crossref]

Proc. SPIE (1)

D. Lepage, A. Jiménez, D. Carrier, and J. J. Dubowski, “Hyperspectral plasmonics,” Proc. SPIE 7922, 79220H (2011).
[Crossref]

Sens. Actuat, Biol. Chem. (1)

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuat, Biol. Chem. 91, 266 (2003).

Surf. Sci. (1)

C. Thirstrup, M. Sakurai, T. Nakayama, and K. Stokbro, “Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces,” Surf. Sci. 424(2-3), 329–334 (1999).
[Crossref]

Other (2)

M. M. W. Johnston, D. M. Wilson, K. S. Boosh, and J. Cramer, “Integrated optical computing: system-on-chip for surface plasmon resonance imaging,” in IEEE International Symposium on Circuits and Systems (ISCAS), 4, 3483–3486 (IEEE, 2005).
[Crossref]

Z. Geng, X. Ji, X. Lou, Q. Li, W. Wang, and Z. Li, “A surface plasmon resonance (SPR) sensor chip integrating prism array based on polymer microfabrication,” in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT) (IEEE, 2008), pp. 2561–2564.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of an integrated SPR microstructure (a), the 3D propagation of the SPR signal generated by the system (b) and the hyperspectral setup for mapping of the SPR effect (c). For a given point of the source of light (a), there is a continuum of emissions covering all the range of wavevectors including the one (kx-SPR) for generating a resonance between the top dielectric and metal film. The drawing shows how the SPW traveling over the dielectric/metal interface is diffracted in form of light for the first order by the grating (a). The sketch (b) shows the formation of the SPR signal in 3D space (kx, ky and E). Biosensing application is based on the following of the shift between the reference cone and the target, which has a different diameter. The hyperspectral imager (c) collects the information inside of the cone kligth (b). Optical signal from the sample is collected by M.O. and separated spectrally by a volume Bragg grating (VBG). The result is a 3D cube of intensity in Fourier space distributed by energy and wavevectors.
Fig. 2
Fig. 2 Optical image of the sample with 25 SPR biosensing zones (a) and a sketch of the individual zone (b). The size of an emission area is of 1 mm x 1 mm. The detail of the structure (b) shows the contact areas, the SiO2 layer and the grating on top of the functionalized surface. Alignment marks were made to facilitate the fabrication process involving photo and e-beam lithography.
Fig. 3
Fig. 3 Calculated (a) and measured total output SPR intensity for prototypes with 500 nm (b) and 260 nm (c) thick SiO2 layers. A sample with the thicker layer of dielectric (b) shows strong interference from the S-polarization mode, making the SPR signal less defined. For the thinner layer of SiO2, S-polarization modes are not coupled leaving the SPR signal much cleaner even if the P-polarization modes produce a weaker signal.
Fig. 4
Fig. 4 The principle of measuring SPR shifts (a) and examples of SPR signals collected from samples exposed to deionized water (b) and a saline solution at 80 mg/mL (c). Changes in the SPR angle can be seen as increase of the separation distance between the two SPR profiles shown in (a) as D1 (reference) and D2 (saltwater solution). The thickness of SiO2 dependent strength of some modes has resulted in overlapping of SPR profiles at λ > 625 nm, as seen in (b) and (c). However, the overall shift of the SPR profiles is evident as illustrated by the displacement of an apex towards higher wavelength values.
Fig. 5
Fig. 5 Wavelength dependent (a) and time dependent (b) response (accumulated shift) of the SPR device to the presence of saline solutions at 10, 20 40 and 80 mg/mL. The best dynamic range of the SPR signal is observed at λ ≈619 and 630 nm. An increase of the background level to near 0.10-0.12 µm−1 is observed in Fig. 5(b) following the injection of a saline solution.
Fig. 6
Fig. 6 Dependence of a relative SPR shift distance on the concentration of saline water solution for the 624 nm (open symbols) and accumulated for all wavelengths (full symbols) experiments (a). Average values of the refractive index (solid line) as a function of the concentration of saline water solution calculated based on the 632.8 nm literature data (dashed lines) [21, 22] and on the results obtained at 650 nm with a commercial NanoSPR instrument (dotted line) (b). The relative SPR shift distance of the investigated device calculated for 624 nm (dashed line) and for all wavelengths (solid line) in function of the refractive index (c).

Metrics