Abstract

A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al0.15Ga0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ∼ 745 A/cm2 with a peak-power output of ∼10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choice of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-lasing channel quantum cascade laser based on scattering-assisted injection design

Boyu Wen, Chao Xu, Siyi Wang, Kaixi Wang, Man Chun Tam, Zbig Wasilewski, and Dayan Ban
Opt. Express 26(7) 9194-9204 (2018)

Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling

S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu
Opt. Express 20(4) 3866-3876 (2012)

Extraction-controlled terahertz frequency quantum cascade lasers with a diagonal LO-phonon extraction and injection stage

Y. J. Han, L. H. Li, A. Grier, L. Chen, A. Valavanis, J. Zhu, J. R. Freeman, N. Isac, R. Colombelli, P. Dean, A. G. Davies, and E. H. Linfield
Opt. Express 24(25) 28583-28593 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [Crossref]
  3. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
    [Crossref]
  4. C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
    [Crossref]
  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
    [Crossref] [PubMed]
  6. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
    [Crossref]
  7. C. Worral, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171 (2006).
    [Crossref]
  8. S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
    [Crossref]
  9. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
    [Crossref]
  10. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
    [Crossref]
  11. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
    [Crossref]
  12. K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
    [Crossref] [PubMed]
  13. S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
    [Crossref]
  14. S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
    [Crossref]
  15. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80, 245316 (2009).
    [Crossref]
  16. H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
    [Crossref]
  17. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
    [Crossref]
  18. S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
    [Crossref]
  19. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
    [Crossref]
  20. R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
    [Crossref] [PubMed]
  21. S. Kumar, “Development of terahertz quantum-cascade lasers,” PhD dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2007).

2014 (4)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

2013 (1)

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

2012 (4)

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
[Crossref] [PubMed]

C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

2011 (2)

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[Crossref]

2009 (2)

S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80, 245316 (2009).
[Crossref]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

2007 (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

2006 (3)

C. Worral, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171 (2006).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

2003 (1)

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Aers, G.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Alton, J.

Ban, D.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Barbieri, S.

Beere, H.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

Beere, H. E.

C. Worral, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Callebaut, H.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Chan, C. W. I.

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Dhar, R. S.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

Dupont, E.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Edamura, T.

Faist, J.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

Fathololoumi, S.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Fischer, M.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Fujita, K.

Furuta, S.

Hirakawa, K.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Hosako, I.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Houghton, M.

Hoyler, N.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Hu, Q.

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80, 245316 (2009).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jirauschek, C.

Khanal, S.

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

Klimeck, G.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kubis, T.

K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
[Crossref] [PubMed]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Kumar, S.

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[Crossref]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80, 245316 (2009).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

S. Kumar, “Development of terahertz quantum-cascade lasers,” PhD dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2007).

Laframboise, S.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

Laframboise, S. R.

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Lindskog, M.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Mátyás, A.

Razavipour, S. G.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Reno, J. L.

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Ritchie, D.

C. Worral, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14, 171 (2006).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

Sekine, N.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Sirtori, C.

Tanaka, K.

Terazzi, R.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Vogl, P.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Wacker, A.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Walther, C.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

Wasilewski, Z.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

Wasilewski, Z. R.

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Worral, C.

Xu, C.

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

Yamanishi, M.

Yasuda, H.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Zhao, L.

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

Appl. Phys. Lett. (7)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

C. W. I. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett. 88, 121123 (2006).
[Crossref]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[Crossref]

S. G. Razavipour, E. Dupont, C. W. I. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309 (2014).
[Crossref]

IEEE IEEE J. Sel. Top. Quantum Electron. (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[Crossref]

J. Appl. Phys. (2)

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys. 113, 203107 (2013).
[Crossref]

J. Opt (1)

S. Khanal, L. Zhao, J. L. Reno, and S. Kumar, “Temperature performance of terahertz quantum-cascade lasers with resonant phonon active-regions,” J. Opt 16, 094001 (2014).
[Crossref]

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

Nat. Phys. (1)

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum-cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7, 166 (2011).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80, 245316 (2009).
[Crossref]

Sci. Rep. (1)

R. S. Dhar, S. G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, and D. Ban, “Direct nanoscale imaging of evolving electric field domains in quantum structures,” Sci. Rep. 4, 7183 (2014).
[Crossref] [PubMed]

Other (1)

S. Kumar, “Development of terahertz quantum-cascade lasers,” PhD dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Conduction-band diagrams for design SARP172 at two different biases where the repeat-structure with four-wells is highlighted. Starting from leftmost barrier of the period, the layer thicknesses in nm (with barriers indicated in bold-face font) are 4.24/8.48/3.11/11.02/2.54/7.91/4.24/16.67 and the widest well is n-doped with Si at 1.9 × 1016 cm−3. The average doping in the active region is 5.44 × 1015 cm−3 (3.17×1010 cm−2 per period). (a) Band diagram at design-bias corresponding to peak-gain condition, at 81 mV/module (1.39×106 V/m). The radiative transition is from subband 4 3. (b) Band diagram at a lower bias of 63 mV/module that corresponds to the extraction resonance for resonant-phonon depopulation scheme where lower radiative subband 3 aligns with subband 2 in the adjacent well (energy splitting ∼ 4.1 meV).
Fig. 2
Fig. 2 (a) Experimental results from a representative Fabry-Pérot cavity QCL. Pulsed I–V characteristic at 46 K from a 0.64 mm × 150 µm ridge laser is shown with blue line. The locations of threshold (Jth 745 A/cm2) and peak-power (Jpeak ∼ 1350 A/cm2) current-density are indicated. Digitized G–V characteristic of the same device is shown with green line. The occurrence of valleys on the G–V curve correspond approximately to bias that leads to local maxima in current-transport due to resonant-tunneling alignments of different subbands as indicated. (b) Conduction-band diagram of the QCL structure when biased at 38.5 mV/module, which corresponds to a low-bias parasitic current channel due to the 1′2 subband alignment [8].
Fig. 3
Fig. 3 (a) Pulsed L–I characteristics from the representative Fabry-Pérot cavity QCL of dimensions 0.64 mm × 150 µm plotted as a function of heat-sink temperature T. The measurements were performed with 200 ns current pulses repeated at 100 kHz. The L–I data was recorded with a pyroelectric detector. The peak optical power is calibrated using a thermopile power meter placed face-to-face with the cryocooler window without any corrections for collected power. Upper inset shows the threshold current-density (Jth) versus T plotted on a semi-logarithmic scale. A phenomenological fit to the expression Jth ∝ exp(T/T0) is indicated by a straight line, which results in a value of T0 = 141 K. (b) Representative spectra from the device measured close to threshold at different heat-sink temperatures. For 46 K, spectrum close to the peak current-density is also shown. The spectra were measured using a Bruker 70v Fourier-transform spectrometer under vacuum with the QCL biased with current pulses at 2% duty-cycle. The QCL structure was designed to lase in the frequency range of ~ 2.0–2.3 THz (radiative-separation is Stark-shifted from ~ 2 THz to 2.2 THz from low-bias to design-bias). The QCL achieves lasing predominantly at a frequency of 2.1 THz. At 46, the center frequency of the emission is at 2.07 THz around threshold (~ 750 A/cm2), which shifts to ~ 2.14 THz at the peak current-density (~ 1350 A/cm2), which confirms that emission is entirely due to the 4 3 radiative transition.

Tables (1)

Tables Icon

Table 1 THz QCLs with scattering-assisted (SA) injection listed in chronological order of development. The key design and performance parameters are indicated.

Metrics