Abstract

Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoelastic coupling in gallium arsenide optomechanical disk resonators

Christopher Baker, William Hease, Dac-Trung Nguyen, Alessio Andronico, Sara Ducci, Giuseppe Leo, and Ivan Favero
Opt. Express 22(12) 14072-14086 (2014)

Optical instability and self-pulsing in silicon nitride whispering gallery resonators

Christophe Baker, Sebastian Stapfner, David Parrain, Sara Ducci, Giuseppe Leo, Eva M. Weig, and Ivan Favero
Opt. Express 20(27) 29076-29089 (2012)

Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators

Jushuai Wu, Xin Guo, A. Ping Zhang, and Hwa-Yaw Tam
Opt. Express 23(23) 29708-29714 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
    [Crossref]
  2. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
    [Crossref]
  3. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
    [Crossref] [PubMed]
  4. A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008).
    [Crossref] [PubMed]
  5. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref] [PubMed]
  6. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
    [Crossref] [PubMed]
  7. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
    [Crossref]
  8. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
    [Crossref] [PubMed]
  9. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
    [Crossref]
  10. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
    [Crossref] [PubMed]
  11. L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
    [Crossref]
  12. D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
    [Crossref]
  13. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
    [Crossref]
  14. J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities (PanStanford, 2014).
  15. I. Favero, “Gallium Arsenide disks as optomechanical resonators,” in Cavity Optomechanics (Springer, 2014).
  16. C. Baker, “On-chip nano-optomechanical whispering gallery resonators,” PhD thesis Université Paris Diderot (2013).
  17. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
    [Crossref]
  18. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 µm,” Opt. Lett. 33(16), 1908–1910 (2008).
    [Crossref] [PubMed]
  19. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  20. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
    [Crossref] [PubMed]
  21. A. Andronico, “Etude électromagnétique d’émetteurs intégrés infrarouges et terahertz en AlGaAs,” PhD thesis Université Paris Diderot (2008).
  22. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
    [Crossref]
  23. L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
    [Crossref]
  24. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2d photonic crystals,” Opt. Express 13(7), 2487–2502 (2005).
    [Crossref] [PubMed]
  25. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
    [Crossref]
  26. M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
    [Crossref]
  27. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
    [Crossref]
  28. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  29. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
    [Crossref] [PubMed]
  30. S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
    [Crossref]
  31. N. Hill, “Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24(12), 7112–7120 (1981).
    [Crossref]
  32. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
    [Crossref] [PubMed]
  33. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  34. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  35. D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
    [Crossref]
  36. B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
    [Crossref]
  37. W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
    [Crossref] [PubMed]
  38. S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
    [Crossref]
  39. A. Baca, and C. Ashby, Fabrication of GaAs Devices (The Institution of Engineering and Technology, 2005).
  40. C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
    [Crossref]
  41. E. McLaughlin, “The thermal conductivity of liquids and dense gases,” Chem. Rev. 64(4), 389–428 (1964).
    [Crossref]
  42. G. M. Hale and M. R. Querry, “Optical constants of water in the 200nm to 200μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  43. H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
    [Crossref]
  44. C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
    [Crossref]
  45. E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
    [Crossref]
  46. G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
    [Crossref]
  47. S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
    [Crossref]
  48. V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
    [Crossref]
  49. V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
    [Crossref]

2014 (2)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref] [PubMed]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

2012 (1)

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

2011 (5)

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

2010 (3)

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

2009 (1)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

2008 (4)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 µm,” Opt. Lett. 33(16), 1908–1910 (2008).
[Crossref] [PubMed]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008).
[Crossref] [PubMed]

2007 (4)

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
[Crossref] [PubMed]

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref] [PubMed]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

2006 (2)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

2005 (5)

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding,” Opt. Express 13(5), 1615–1620 (2005).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2d photonic crystals,” Opt. Express 13(7), 2487–2502 (2005).
[Crossref] [PubMed]

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

2004 (3)

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

2001 (1)

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

2000 (1)

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

1999 (1)

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

1991 (1)

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

1986 (1)

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

1983 (1)

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[Crossref]

1981 (1)

N. Hill, “Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24(12), 7112–7120 (1981).
[Crossref]

1978 (1)

B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
[Crossref]

1973 (2)

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

G. M. Hale and M. R. Querry, “Optical constants of water in the 200nm to 200μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
[Crossref] [PubMed]

1964 (1)

E. McLaughlin, “The thermal conductivity of liquids and dense gases,” Chem. Rev. 64(4), 389–428 (1964).
[Crossref]

Almeida, V. R.

Andronico, A.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008).
[Crossref] [PubMed]

Arakawa, Y.

Asano, T.

Ashby, C. I. H.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Baba, T.

Baca, A. G.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Baker, C.

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
[Crossref]

Barwicz, T.

Bazhenov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Becher, C.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Bégin, G.

Belacel, C.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

Benisty, H.

Berger, V.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

Berkovits, V.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Bessey, J.

B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
[Crossref]

Bhat, R.

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

Bond, T. C.

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
[Crossref]

Bosacchi, B.

B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
[Crossref]

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref] [PubMed]

Caillet, X.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

Carmon, T.

Chang, P.-C.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Chappel, T. I.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Chiaradia, P.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

Combrié, S.

De Rossi, A.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

Doyle, B.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

Ducci, S.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

Dupuis, C.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Fan, J. J.

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Favero, I.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008).
[Crossref] [PubMed]

Fejer, M. M.

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Forchel, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Galopin, E.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

Gayral, B.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Gmitter, T.

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

Gonzalez, L. P.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

Gorbunov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Guha, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

Hafich, M. J.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Hale, G. M.

Hammons, B. E.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Haus, H.

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[Crossref]

Heebner, J. E.

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

Hill, N.

N. Hill, “Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24(12), 7112–7120 (1981).
[Crossref]

Hofmann, C.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Huffaker, D.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Hurlbut, W. C.

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Ide, T.

Imamoglu, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Iwamoto, S.

Jacobs, S.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Jain, F.

B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
[Crossref]

Joannopoulos, J.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Johnson, T. J.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

Kallman, J. S.

Kamp, M.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Karalis, A.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Karpenko, A.

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Kim, H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

Kiraz, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Kirchner, P. D.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Kleinman, D. A.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Krishnamurthy, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

Kulakovskii, V. D.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref] [PubMed]

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref] [PubMed]

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Kuznetsov, M.

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[Crossref]

Laghumavarapu, R. B.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

Lee, Y. S.

Lemaitre, A.

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

Lemaître, A.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Leo, G.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008).
[Crossref] [PubMed]

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

Lin, A.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Lipson, M.

Löffler, A. L.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Manin, L.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Mariani, G.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Mariani, S.

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

McLaughlin, E.

E. McLaughlin, “The thermal conductivity of liquids and dense gases,” Chem. Rev. 64(4), 389–428 (1964).
[Crossref]

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

Michler, P.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Miller, R. C.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Münch, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Nakaoka, T.

Nannarone, S.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

Nannichi, Y.

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Noda, S.

Nordland, W. A.

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Offsey, S. D.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Oigawa, H.

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Oshima, M.

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Paget, D.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Painter, O.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
[Crossref]

Parrain, D.

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

Pelouard, J. L.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

Petroff, P. M.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Pettit, G. D.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Povinelli, M.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Querry, M. R.

Reithmaier, J. P.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Reitzenstein, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

Rowe, A.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

Sandroff, C. J.

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

Sato, Y.

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Schoenfeld, W. V.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Schwartz, B. J.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Senanayake, P.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Senellart, P.

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

Shapiro, J.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Skorobogatiy, M.

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

Soljacic, M.

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref] [PubMed]

Srinivasan, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
[Crossref]

Sugahara, H.

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Taguchi, Y.

Takahashi, Y.

Talneau, A.

Tanabe, T.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Tatebayashi, J.

Tereshchenko, O.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Tran, Q. V.

Tremolet de Villers, C.

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Ulin, V.

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Vahala, K.

Verdier, T.

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

Vodopyanov, K. L.

Warren, A. C.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Woodall, J. M.

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

Yang, L.

Yu, Z. G.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

Zavadil, K. R.

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

Zhang, L.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

S. G. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[Crossref]

Appl. Phys. Lett. (17)

D. A. Kleinman, R. C. Miller, and W. A. Nordland, “Two-photon absorption of nd laser radiation in gaas,” Appl. Phys. Lett. 23(5), 243–244 (1973).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdiks,” Appl. Phys. Lett. 85(17), 3693 (2004).
[Crossref]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched gaas microdisks containing inas quantum boxes,” Appl. Phys. Lett. 75(13), 1908 (1999).
[Crossref]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure,” Appl. Phys. Lett. 78(25), 3932 (2001).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289 (1992).
[Crossref]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. L. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized gaas optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011).
[Crossref]

D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Damping of optomechanical disks resonators vibrating in air,” Appl. Phys. Lett. 100(24), 242105 (2012).
[Crossref]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in gaas and algaas microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip,” Appl. Phys. Lett. 99(15), 151117 (2011).
[Crossref]

C. I. H. Ashby, K. R. Zavadil, A. G. Baca, P.-C. Chang, B. E. Hammons, and M. J. Hafich, “Metal-sulfur-based air-stable passivation of gaas with very low surface densities,” Appl. Phys. Lett. 76(3), 327 (2000).
[Crossref]

E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated gaas surfaces,” Appl. Phys. Lett. 51(6), 439 (1987).
[Crossref]

G. Mariani, R. B. Laghumavarapu, C. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillars,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappel, and G. D. Pettit, “Unpinned (100) gaas surfaces in air using photochemistry,” Appl. Phys. Lett. 48(7), 475 (1986).
[Crossref]

V. Berkovits, D. Paget, A. Karpenko, V. Ulin, and O. Tereshchenko, “Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier,” Appl. Phys. Lett. 90(2), 022104 (2007).
[Crossref]

Chem. Rev. (1)

E. McLaughlin, “The thermal conductivity of liquids and dense gases,” Chem. Rev. 64(4), 389–428 (1964).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

J. Appl. Phys. (2)

B. Bosacchi, J. Bessey, and F. Jain, “Two-photon absorption of neodymium laser radiation in gallium arsenide,” J. Appl. Phys. 49(8), 4609 (1978).
[Crossref]

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in gaas, inp, gainas, and inasp,” J. Appl. Phys. 109(3), 033102 (2011).
[Crossref]

J. Electrochem. Soc. (1)

V. Berkovits, V. Ulin, O. Tereshchenko, D. Paget, A. Rowe, P. Chiaradia, B. Doyle, and S. Nannarone, “Chemistry of wet treatment of GaAs (111) b and GaAs (111) a in hydrazine-sulfide solutions,” J. Electrochem. Soc. 158(3), D127–D135 (2011).
[Crossref]

J. Eur. Opt. Soc (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc 3, 08030 (2008).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

H. Oigawa, J. J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (nh4)2 sx treatment on the surface of iii–v compound semiconductors,” Jpn. J. Appl. Phys. 30(2), L322–L325 (1991).
[Crossref]

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. B (1)

N. Hill, “Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24(12), 7112–7120 (1981).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref] [PubMed]

L. Ding, C. Baker, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications,” Proc. SPIE 7712, 771211 (2010).
[Crossref]

Other (5)

A. Baca, and C. Ashby, Fabrication of GaAs Devices (The Institution of Engineering and Technology, 2005).

A. Andronico, “Etude électromagnétique d’émetteurs intégrés infrarouges et terahertz en AlGaAs,” PhD thesis Université Paris Diderot (2008).

J. C. L. Ding, C. Baker, A. Andronico, D. Parrain, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “Gallium arsenide disk optomechanical resonators,” in Handbook of Optical Microcavities (PanStanford, 2014).

I. Favero, “Gallium Arsenide disks as optomechanical resonators,” in Cavity Optomechanics (Springer, 2014).

C. Baker, “On-chip nano-optomechanical whispering gallery resonators,” PhD thesis Université Paris Diderot (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Axisymmetric FEM computation of the TE (p = 4, m = 11) WGM of a GaAs disk of radius 2.5 μm and thickness 200 nm. The cross section of the disk is visualized. The vertical axis is Z, while the horizontal axis corresponds to the radial direction. The dominant radial component of the electric field E is shown in arbitrary units, together with PMLs employed for the computation of Qrad.

Fig. 2
Fig. 2

WGM radiative quality factor Qrad set by bending losses of GaAs disks. (a) Disk radius of 5 μm and thickness of 200 nm. (b) Disk radius of 2.5 μm and thickness of 200 nm. The values are given for TE and TM-like modes of varying radial p number, in the 1.55 μm wavelength range.

Fig. 3
Fig. 3

SEM images of fabricated GaAs disks. (a) Complete disk of diameter 8 μm and thickness 200 nm. (b) Zoom on the top-surface and sidewall of a large GaAs disk of thickness 200 nm, with no residual roughness visible at that scale. (c) Close-up on a GaAs disk sidewall showing barely resolvable residual imperfections at the finest scale achievable in the SEM.

Fig. 4
Fig. 4

TEM images of a GaAs disk of radius 2.5 μm and thickness 200 nm. (a) Complete disk with magnification factor of × 3000. (b) × 10 000. (c) × 50 000. (d) × 200 000. (e) × 400 000. (f) × 800 000.

Fig. 5
Fig. 5

Principles of disk contour analysis. (a) Image of an irregular disk. (b) A rough contour boundary is extracted. (c) The irregular contour is fitted with a circle arc. (d) The distance to the fit circle is registered as a function of the azimuthal angle θ. (e) The obtained irregular contour is plotted on a horizontal axis for further analysis.

Fig. 6
Fig. 6

Contour analysis of a complete disk. (a) Azimuthal representation of the distance δr(θ) to the fit disk. Data are in blue and the fitted waviness function is in red. (b) Auto-correlation function of the contour r(θ). (c) Residue of the contour once the waviness is subtracted (d) Auto-correlation function of the residue.

Fig. 7
Fig. 7

Poynting vector modulus in the far field (a.u.). The calculation is made by FEM on the TE (p = 1,m = 21) WGM of the complete disk studied by TEM in previous section (disk 1). The disk with its WGM is visible in the middle of the sphere. (a) The complete irregular contour δr(θ) is employed, including the roughness and waviness extracted by the TEM analysis. (b) A simple waviness contour δr(θ) = 50cos(21 × θ) (in nm) is taken for illustrative purpose.

Fig. 8
Fig. 8

Computed Q factor of the 4 TE WGMs of disk1, for various artificial or real measured contours. The calculation uses the perturbative/numerical approach discussed in the text. Left panel: An artificial wavy contour δr(θ) = 50cos(mw × θ) (in nm) is employed. The black (red, green, blue) data correspond respectively to TE (p = 1,m = 21; p = 2,m = 17; p = 3,m = 14; p = 4,m = 11). The colored vertical markers indicate the azimuthal number m of the corresponding WGM. A marked drop in Qwav is observed when mw approaches m. Right panel: The real contour measured by TEM on disk 1 is employed, with its different waviness components and rough residue analyzed in section 4. The fit circle of the contour is associated to Qrad, while the waviness is associated to Qwav and the residual roughness to Qrough. The total Q shown in purple is given by Qscatt−1 = Qrad−1 + Qwav−1 + Qrough−1.

Fig. 9
Fig. 9

Thermo-optic distortion of WGM resonances in an optical transmission spectrum. The disk radius is 2.5 μm and the thickness 200 nm (a) Experimental data. The optical power is increased from black to red to blue, making the thermo-optic triangular shape of the resonance progressively appear (15 μW, 75 μW and 150 μW respectively of output power). The employed resonance has a doublet structure due to the coupling of clockwise and counter-clockwise modes of the disk. (b) Modeling. The thermo-optic distortion is numerically modeled as explained in the text.

Fig. 10
Fig. 10

Two-photon absorption in WGM spectroscopy at large optical power. (a) Experimental data. The lowest optical power (black curve) corresponds to 333 μW measured at the output of optical fiber taper, where the measured Q is 2.3 104. The power is then multiplied by a factor 2 (red) to 13 (orange). (b) Numerical model. The behavior is reproduced by the three coupled equations discussed in the text including TPA.

Fig. 11
Fig. 11

WGM laser spectroscopy and thermo-optic distortion in liquids. (a) In air. The optical power is increased from black to blue, revealing the thermo-optic triangular shape of the resonance. Here again, a resonance doublet is visible because of coupling of clockwise and counter-clockwise WGMs. (b) In DI water. The optical power is increased from black to purple, with same color code as above. The thermo-optic distortion of the resonance is slightly reduced and the average wavelength red-shifted by about 15nm with respect to (a). (c) In ammonia. The optical power is increased from black to red, with same color code as above. The thermo-optic distortion is strongly reduced with respect to previous cases. (d) Water absorption spectrum shown for reference, taken from [42]. In each configuration, the out of resonance photodetector bias is proportional to the optical power Pin circulating in the waveguide and incident onto the resonator.

Tables (1)

Tables Icon

Table 1 Analysis of the residual roughness of five GaAs disks having distinct contour angular extent.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δr( θ )=r( θ )R= m=1 N A m cos(mθ+ ϕ m )+Res(θ)
   r( θ )=24571.35cos( θ0.60 )12cos( 2θ+0.36 ) +17cos( 3θ+1.34 )+3.39cos( 4θ+0.25 )0.9cos( 5θ+0.03 )+1.4cos( 6θ+0.23 ) +0.6cos( 7θ0.06 )1.1cos( 8θ+0.09 )+Res(θ)
( E( r ) ) ω 2 c 2 ε r 0 (r)E( r )= ω 2 c 2 δ ε r (r)E( r )
( δE( r ) ) ω 2 c 2 ε r 0 ( r )δE( r )= ω 2 c 2 δ ε r ( r ) E 0 ( r )+ ω 2 c 2 δ ε r (r)δE( r )
J( r )=iω[ ε 0 Δ ε r E 0 ( r )Δ ε r 1 D 0 ( r ) ]δ(rR)δr( θ )
A( r )= μ 0 4π V J( r' ) e i ω c | rr' | | rr' | d 3 r'  ~  μ 0 4π e i ω c r r V J( r' ) e i ω c   u r .r'   d 3 r'
δE( r )=i ω  u r ( u r A )    ;   δH( r )=i ω ε 0 μ 0 ( u r A )
P abs = κ abs κ e ( ω cav +Δ ω cav ω) 2 + ( κ e 2 + κ i 2 ) 2 P in

Metrics