Abstract

We present a novel method to discretely tune the emission wavelength of pulsed fiber-integrated lasers. As spectral filter, a step-chirped fiber Bragg grating (FBG) array is employed combining a monolithic structure with an unrivaled design freedom enabling large tuning bandwidths as well as tailored spectral characteristics towards fingerprint tuning features. Together with an electrical control mechanism ensuring programmable operation, this tuning method promotes fiber-integrated lasers to access new fields of applications e.g. in biophotonics and distributed sensing. The potential of this tuning concept is investigated based on an Ytterbium-doped fiber laser. The system shows superb emission properties including excellent wavelength stability, high spectral signal contrast (up to 50dB) and narrow linewidth (15GHz) as well as adjustable pulse durations in the nanosecond range with peak powers up to 100W. Additionally, the unique spectral potential of this method is demonstrated by realizing filter designs enabling e.g. a record tuning range of 74nm for fiber-integrated lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel notch filter based on a phase-shifted phase-only-sampled fiber Bragg grating

Ming Li, Hongpu Li, and Yves Painchaud
Opt. Express 16(23) 19388-19394 (2008)

All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range

Tobias Tiess, Manfred Rothhardt, Matthias Jäger, and Hartmut Bartelt
Appl. Opt. 52(6) 1161-1167 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5 (2006).
    [Crossref]
  2. B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
    [Crossref]
  3. W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles (Springer, 2008), 4th ed.
  4. V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
    [Crossref]
  5. M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
    [Crossref]
  6. F. J. Duarte, Tunable Laser Applications (CRC, 2010).
  7. R. Ku, E. Hinkley, and J. Sample, “Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system,” Appl. Opt. 14, 854–861 (1975).
    [Crossref] [PubMed]
  8. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49, F71–F78 (2010).
    [Crossref] [PubMed]
  9. M. J. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Marcel Dekker Inc., 2001).
    [Crossref]
  10. J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
    [Crossref]
  11. D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
    [Crossref]
  12. J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
    [Crossref]
  13. A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [Crossref]
  14. S.-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable fbg as laser-cavity ends,” IEEE J. Quantum Elect. 44, 520–527 (2008).
    [Crossref]
  15. D. R. Huber, “Method for producing a tunable erbium fiber laser,” United States Patent 5159601A (October 27, 1992).
  16. V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
    [Crossref]
  17. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).
  18. J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
    [Crossref]
  19. G. Imeshev, I. Hartl, and M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber bragggrating matched to the treacy compressor,” Opt. Lett. 29, 679–681 (2004).
    [Crossref] [PubMed]
  20. S. Li and K. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating,” IEEE Photonic. Tech. L. 10, 799–801 (1998).
    [Crossref]
  21. B. Burgoyne and A. Villeneuve, “Programmable lasers: design and applications,” Proc. SPIE 7580, 758002 (2010).
    [Crossref]
  22. C. Askins, M. Putnam, G. Williams, and E. Friebele, “Stepped-wavelength optical-fiber bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
    [Crossref] [PubMed]
  23. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [Crossref]
  24. T. Tiess, M. Rothhardt, M. Jäger, and H. Bartelt, “All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range,” Appl. Opt. 52, 1161–1167 (2013).
    [Crossref] [PubMed]
  25. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
    [Crossref]
  26. A. Villeneuve and N. Godbout, “Tunable mode-locked laser,” United States Patent 8085822 B2 (December 27, 2009).
  27. H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.
  28. A. E. Siegman, Lasers (University Science Books, 1986).
  29. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
    [Crossref]
  30. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]

2013 (1)

2010 (2)

2009 (1)

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

2008 (1)

S.-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable fbg as laser-cavity ends,” IEEE J. Quantum Elect. 44, 520–527 (2008).
[Crossref]

2007 (2)

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

2006 (1)

2005 (1)

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

2004 (3)

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
[Crossref]

G. Imeshev, I. Hartl, and M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber bragggrating matched to the treacy compressor,” Opt. Lett. 29, 679–681 (2004).
[Crossref] [PubMed]

1998 (1)

S. Li and K. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating,” IEEE Photonic. Tech. L. 10, 799–801 (1998).
[Crossref]

1997 (3)

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

1995 (1)

J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
[Crossref]

1994 (1)

1991 (1)

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

1990 (2)

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

1975 (1)

Afanasiev, D.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Akulov, V.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Alam, S.-U.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Askins, C.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

C. Askins, M. Putnam, G. Williams, and E. Friebele, “Stepped-wavelength optical-fiber bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[Crossref] [PubMed]

Babin, S.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Bartelt, H.

Bennion, I.

J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
[Crossref]

Brownstein, M.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Burgoyne, B.

B. Burgoyne and A. Villeneuve, “Programmable lasers: design and applications,” Proc. SPIE 7580, 758002 (2010).
[Crossref]

Buus, J.

Chai, L.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Chan, K.

S. Li and K. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating,” IEEE Photonic. Tech. L. 10, 799–801 (1998).
[Crossref]

Chojetzki, C.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Churkin, D.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Clarkson, W.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles (Springer, 2008), 4th ed.

DiGiovanni, D.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Doran, N.

J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
[Crossref]

Dowell, M.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Duarte, F. J.

F. J. Duarte, Tunable Laser Applications (CRC, 2010).

Fang, X.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Fermann, M. E.

Frank, F.

V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
[Crossref]

Friebele, E.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Gaigalas, A.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Godbout, N.

A. Villeneuve and N. Godbout, “Tunable mode-locked laser,” United States Patent 8085822 B2 (December 27, 2009).

Grudinin, A.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Hanna, D.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Hartl, I.

Hinkley, E.

Hoffman, R. A.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Hu, M.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Huber, D. R.

D. R. Huber, “Method for producing a tunable erbium fiber laser,” United States Patent 5159601A (October 27, 1992).

Hwang, J.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Imeshev, G.

Jäger, M.

Jhong, G.-S.

S.-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable fbg as laser-cavity ends,” IEEE J. Quantum Elect. 44, 520–527 (2008).
[Crossref]

Kablukov, S.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Knappe, V.

V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
[Crossref]

Koo, K.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Ku, R.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Levenson, R.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Li, S.

S. Li and K. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating,” IEEE Photonic. Tech. L. 10, 799–801 (1998).
[Crossref]

Liaw, S.-K.

S.-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable fbg as laser-cavity ends,” IEEE J. Quantum Elect. 44, 520–527 (2008).
[Crossref]

Limpert, J.

Liu, B.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Milner, T. E.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Mueller, H.-R.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Murphy, E. J.

Nilsson, J.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Ommer, J.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Othonos, A.

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Percival, R.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Perry, I.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Piccirilli, A.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Pramayon, P.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Presby, H.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Putnam, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

C. Askins, M. Putnam, G. Williams, and E. Friebele, “Stepped-wavelength optical-fiber bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[Crossref] [PubMed]

Reichel, V.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.

Rohde, E.

V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
[Crossref]

Rothhardt, M.

T. Tiess, M. Rothhardt, M. Jäger, and H. Bartelt, “All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range,” Appl. Opt. 52, 1161–1167 (2013).
[Crossref] [PubMed]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Rybakov, M.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Sahu, J.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Sample, J.

Schreiber, T.

Schuster, K.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Selvas, R.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Smart, R.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Song, Y.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Stone, J.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Stulz, L.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Sulhoff, J.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Suni, P.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Tiess, T.

Tropper, A.

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Tünnermann, A.

A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49, F71–F78 (2010).
[Crossref] [PubMed]

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.

Turner, P.

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Unger, S.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Villeneuve, A.

B. Burgoyne and A. Villeneuve, “Programmable lasers: design and applications,” Proc. SPIE 7580, 758002 (2010).
[Crossref]

A. Villeneuve and N. Godbout, “Tunable mode-locked laser,” United States Patent 8085822 B2 (December 27, 2009).

Vlasov, A.

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Wang, C.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Welling, H.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.

White, G.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Williams, G.

Williams, J.

J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
[Crossref]

Williams, P.

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Wu, Y.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Zellmer, H.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.

Zheltikov, A.

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Zyskind, J.

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

Appl. Opt. (3)

Electron. Lett. (1)

J. Zyskind, J. Sulhoff, J. Stone, D. DiGiovanni, L. Stulz, H. Presby, A. Piccirilli, and P. Pramayon, “Electrically tunable, diode-pumped erbium-doped fibre ring laser with fibre fabry-perot etalon,” Electron. Lett. 27, 1950–1951 (1991).
[Crossref]

IEEE J. Quantum Elect. (1)

S.-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable fbg as laser-cavity ends,” IEEE J. Quantum Elect. 44, 520–527 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

IEEE Photonic. Tech. L. (1)

S. Li and K. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating,” IEEE Photonic. Tech. L. 10, 799–801 (1998).
[Crossref]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5 (2006).
[Crossref]

J. Mod. Opt. (1)

D. Hanna, R. Percival, I. Perry, R. Smart, P. Suni, and A. Tropper, “An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1010 um to 1162 um and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

M. Brownstein, R. A. Hoffman, R. Levenson, T. E. Milner, M. Dowell, P. Williams, G. White, A. Gaigalas, and J. Hwang, “Biophotonic tools in cell and tissue diagnostics,” J. Res. Natl. Inst. Stand. Technol. 112, 139 (2007).
[Crossref]

Laser Phys. (1)

V. Akulov, D. Afanasiev, S. Babin, D. Churkin, S. Kablukov, M. Rybakov, and A. Vlasov, “Frequency tuning and doubling in yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[Crossref]

Laser Phys. Lett. (1)

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44 (2009).
[Crossref]

Opt. Commun. (1)

J. Williams, I. Bennion, and N. Doran, “The design of in-fiber bragg grating systems for cubic and quadratic dispersion compensation,” Opt. Commun. 116, 62–66 (1995).
[Crossref]

Opt. Eng. (1)

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber bragg gratings – arrays and single gratings of type ii,” Opt. Eng. 44, 060503 (2005).
[Crossref]

Opt. Fiber Technol. (1)

J. Nilsson, W. Clarkson, R. Selvas, J. Sahu, P. Turner, S.-U. Alam, and A. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5 – 30 (2004).
[Crossref]

Opt. Lett. (2)

Photomed. Laser Surg. (1)

V. Knappe, F. Frank, and E. Rohde, “Principles of lasers and biophotonic effects,” Photomed. Laser Surg. 22, 411–417 (2004).
[Crossref]

Proc. SPIE (2)

B. Burgoyne and A. Villeneuve, “Programmable lasers: design and applications,” Proc. SPIE 7580, 758002 (2010).
[Crossref]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

Other (8)

D. R. Huber, “Method for producing a tunable erbium fiber laser,” United States Patent 5159601A (October 27, 1992).

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).

M. J. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Marcel Dekker Inc., 2001).
[Crossref]

W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles (Springer, 2008), 4th ed.

F. J. Duarte, Tunable Laser Applications (CRC, 2010).

A. Villeneuve and N. Godbout, “Tunable mode-locked laser,” United States Patent 8085822 B2 (December 27, 2009).

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-clad fiber laser with 30 w output power,” in “Optical Amplifiers and Their Applications,” (Optical Society of America, 1997), vol. 16, p. 137.

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1:
Fig. 1:

Principle structure of a FBG array with a spatial spacing of Δz between the gratings. Each grating reflects light at the wavelength λFBG,i, respectively. At the bottom, a reflectivity spectrum of the structure is sketched containing N FBGs.

Fig. 2:
Fig. 2:

Principle working scheme of the tuning concept employing a chirped FBG structure as spectral filter included in a sigma ring resonator design. Switching periodically the round trip losses, the modulator presets a particular pulse round trip time TRT for efficient laser operation determining the feedback region of the chirped filter and controlling the emission wavelength λL. For a step-chirped FBG array, a particular FBG is selected providing feedback for lasing.

Fig. 3:
Fig. 3:

Experimental setup of the tunable fiber laser working in the Yb band at 1 μm. For most of the investigations, FBG array A is used covering a spectral range of 18nm.

Fig. 4:
Fig. 4:

The top graph pictures the tuning spectrogram illustrating the spectral emission behavior of the fiber laser scanned in fine increments of the tuning parameter TMP. Following the trace of the bright regions, the emission wavelength of the system shifts with variations in TMP accordingly to the spectral properties of FBG array A. The discrete tuning behavior is highlighted in the bottom graph plotting the spectral emission peak λL vs. TMP.

Fig. 5:
Fig. 5:

The graphs highlight the emission properties of the laser by illustrating example measurements of the emission spectrum in plot (a) and a single pulse shape in plot (b). The temporal measurement has been recorded with an optimized pulse peak power of 100W.

Fig. 6:
Fig. 6:

The graph shows the impact of τGW on the emitted pulse properties i.e. pulse duration τpulse and peak power Ppeak.

Fig. 7:
Fig. 7:

The graph illustrates the stability of the peak wavelength for different operation regimes of the laser including dissimilar pulse durations and power levels. Based on an excellent agreement of the traces within a 15 pm window, the stability is superior to the resolution limit of the OSA used for the measurements.

Fig. 8:
Fig. 8:

The three tuning spectrograms picture the spectral emission behavior of the fiber laser with different FBG arrays employed as filters. FBG array B enables an enormous tuning range of 74nm which depicts a record for fiber-integrated lasers. While covering a smaller wavelength range, FBG array C works with a superb spectral resolution of 100 pm. The right tuning spectrogram demonstrates the flexibility towards tailored spectral emission properties based on stacked tuning ranges in FBG array D.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ FBG ( z ) = λ 0 + γ z .
T filter ( z ) = 2 z n eff c 0
T filter ( λ FBG ) = 2 n eff γ c 0 ( λ FBG λ 0 ) .
T RT ( λ FBG ) = T loop + T filter ( λ FBG ) .
T RT = m T MP ( m : modulation order ) .

Metrics